

Contents

	Overview
	Installation

	Documentation

	Examples and Tutorials

	Contributing

	Deployment

	Installation

	Examples and Tutorials

	Functions documentation
	Comfort models
	Adaptive ASHRAE

	Adaptive EN

	Adaptive Predicted Mean Vote (aPMV)

	Adaptive Thermal Heat Balance (ATHB)

	Adjusted Predicted Mean Votes with Expectancy Factor (ePMV)

	Apparent Temperature (AT)

	Ankle draft

	Clothing prediction

	Cooling Effect (CE)

	Discomfort Index (DI)

	Heat Index (HI)

	Humidex

	Joint system thermoregulation model (JOS-3)

	Normal Effective Temperature (NET)

	Predicted Heat Strain (PHS) Index

	Physiological Equivalent Temperature (PET)

	Predicted Mean Vote (PMV) and Predicted Percentage of Dissatisfied (PPD)

	Predicted Mean Vote (PMV)

	Solar gain on people

	Standard Effective Temperature (SET)

	Two-node model

	Universal Thermal Climate Index (UTCI)

	Use Fans During Heatwaves

	Vertical air temperature gradient

	Wet Bulb Globe Temperature Index (WBGT)

	Wind chill index

	Psychrometrics functions
	PsychrometricValues

	enthalpy()

	p_sat()

	p_sat_torr()

	psy_ta_rh()

	t_dp()

	t_mrt()

	t_o()

	t_wb()

	Utilities functions
	Body Surface Area

	Relative air speed

	Dynamic clothing

	Running mean outdoor temperature

	Units converter

	Sky-vault view fraction

	Reference values clo and met
	Met typical tasks, [met]

	Clothing insulation of typical ensembles, [clo]

	Insulation of individual garments, [clo]

	Contributing
	Bug reports

	Documentation improvements

	Feature requests and feedback

	Development
	Pull Request Guidelines

	Tips

	Authors

	Contact us
	Bug reports

	Changelog
	2.9.1 (2024-01-19)

	2.9.0 (2024-01-15)

	2.8.11 (2023-10-26)

	2.8.11 (2023-10-26)

	2.8.7 (2023-10-23)

	2.8.6 (2023-10-09)

	2.8.4 (2023-09-20)

	2.8.3 (2023-09-14)

	2.8.2 (2023-09-04)

	2.8.1 (2023-07-05)

	2.8.0 (2023-07-03)

	2.7.0 (2023-02-16)

	2.6.0 (2023-01-17)

	2.5.4 (2022-10-12)

	2.5.0 (2022-06-13)

	2.4.0 (2022-06-10)

	2.3.0 (2022-06-01)

	2.2.0 (2022-05-17)

	2.1.1 (2022-05-17)

	2.1.0 (2022-04-20)

	2.0.2 (2022-04-12)

	2.0.0 (2022-04-07)

	1.11.0 (2022-03-16)

	1.10.0 (2021-11-15)

	1.9.0 (2021-10-07)

	1.8.0 (2021-09-28)

	1.7.1 (2021-09-08)

	1.7.0 (2021-07-29)

	1.6.2 (2021-07-08)

	1.6.1 (2021-07-05)

	1.6.0 (2021-05-21)

	1.5.2 (2021-05-05)

	1.5.1 (2021-04-29)

	1.5.0 (2021-04-21)

	1.4.6 (2021-03-30)

	1.3.6 (2021-02-04)

	1.3.5 (2021-02-02)

	1.3.3 (2020-12-14)

	1.3.2 (2020-12-14)

	1.3.1 (2020-10-30)

	1.3.0 (2020-10-19)

	1.2.3 (2020-09-09)

	1.2.2 (2020-08-21)

	1.2.0 (2020-07-29)

	1.0.6 (2020-07-24)

	1.0.4 (2020-07-20)

	1.0.3 (2020-07-01)

	1.0.2 (2020-06-11)

	1.0.0 (2020-06-09)

	0.7.0 (2020-06-09)

	0.6.3 (2020-04-11)

	0.6.3 (2020-03-17)

	0.5.2 (2020-03-11)

	0.5.1 (2020-03-06)

	0.4.1 (2020-02-17)

	0.4.0 (2020-02-17)

	0.3.0 (2020-02-13)

	0.1.0 (2020-02-11)

	0.0.0 (2020-02-11)

Indices and tables

	Index

	Module Index

	Search Page

Overview

	docs

	[image: Documentation Status] [https://readthedocs.org/projects/pythermalcomfort]

	license

	[image: pythermalcomfort license] [https://github.com/CenterForTheBuiltEnvironment/pythermalcomfort/blob/master/LICENSE]

	downloads

	[image: PyPI - Downloads]

	tests

	
[image: AppVeyor Build Status] [https://ci.appveyor.com/project/CenterForTheBuiltEnvironment/pythermalcomfort]

[image: Coverage Status] [https://codecov.io/github/CenterForTheBuiltEnvironment/pythermalcomfort]

[image: Tests to make sure pythermalcomfort works on different Python versions and OS] [https://github.com/CenterForTheBuiltEnvironment/pythermalcomfort/actions/workflows/build-test-publish.yml]

	package

	
[image: PyPI Package latest release] [https://pypi.org/project/pythermalcomfort] [image: PyPI Wheel] [https://pypi.org/project/pythermalcomfort]

[image: Supported versions] [https://pypi.org/project/pythermalcomfort]

[image: pythermalcomfort] [https://snyk.io/advisor/python/pythermalcomfort]

Package to calculate several thermal comfort indices (e.g. PMV, PPD, SET, adaptive) and convert physical variables.

Please cite us if you use this package: Tartarini, F., Schiavon, S., 2020. pythermalcomfort: A Python package for thermal comfort research. SoftwareX 12, 100578. https://doi.org/10.1016/j.softx.2020.100578

	Free software: MIT license

Installation

pip install pythermalcomfort

You can also install the in-development version with:

pip install https://github.com/CenterForTheBuiltEnvironment/pythermalcomfort/archive/master.zip

Documentation

https://pythermalcomfort.readthedocs.io/

Examples and Tutorials

Examples [https://pythermalcomfort.readthedocs.io/en/latest/usage.html] files on how to use some of the functions

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given. Click here [https://pythermalcomfort.readthedocs.io/en/latest/contributing.html] to learn more on how to contribute to the project.

Deployment

I am using travis to test the code. In addition, I have enabled GitHub actions.
Every time the code is pushed or pulled to the master repository then the GitHub action tests the code and if the tests pass, a new version of the package is published automatically on PyPI.
See file in .github/workflows/ for more information.

Installation

At the command line:

pip install pythermalcomfort

Examples and Tutorials

Examples [https://github.com/CenterForTheBuiltEnvironment/pythermalcomfort/tree/master/examples] files on how to use some of the functions

YouTube tutorials [https://youtube.com/playlist?list=PLY91jl6VVD7zMaJjRVrVkaBtI56U7ztQC] playlist

 Functions documentation

Functions documentation

	Comfort models
	Adaptive ASHRAE
	adaptive_ashrae()

	Adaptive EN
	adaptive_en()

	Adaptive Predicted Mean Vote (aPMV)
	a_pmv()

	Adaptive Thermal Heat Balance (ATHB)
	athb()

	Adjusted Predicted Mean Votes with Expectancy Factor (ePMV)
	e_pmv()

	Apparent Temperature (AT)
	at()

	Ankle draft
	ankle_draft()

	Clothing prediction
	clo_tout()

	Cooling Effect (CE)
	cooling_effect()

	Discomfort Index (DI)
	discomfort_index()

	Heat Index (HI)
	heat_index()

	Humidex
	humidex()

	Joint system thermoregulation model (JOS-3)
	JOS3
	JOS3.__init__()

	JOS3.bmr

	JOS3.body_names

	JOS3.body_temp

	JOS3.bsa

	JOS3.clo

	JOS3.dict_results()

	JOS3.par

	JOS3.posture

	JOS3.r_et

	JOS3.r_t

	JOS3.results

	JOS3.rh

	JOS3.simulate()

	JOS3.t_artery

	JOS3.t_cb

	JOS3.t_core

	JOS3.t_fat

	JOS3.t_muscle

	JOS3.t_skin

	JOS3.t_skin_mean

	JOS3.t_superficial_vein

	JOS3.t_vein

	JOS3.tdb

	JOS3.to

	JOS3.to_csv()

	JOS3.tr

	JOS3.v

	JOS3.version

	JOS3.w

	JOS3.w_mean

	Normal Effective Temperature (NET)
	net()

	Predicted Heat Strain (PHS) Index
	phs()

	Physiological Equivalent Temperature (PET)
	pet_steady()

	Predicted Mean Vote (PMV) and Predicted Percentage of Dissatisfied (PPD)
	pmv_ppd()

	Predicted Mean Vote (PMV)
	pmv()

	Solar gain on people
	solar_gain()

	Standard Effective Temperature (SET)
	set_tmp()

	Two-node model
	two_nodes()

	Universal Thermal Climate Index (UTCI)
	utci()

	Use Fans During Heatwaves
	use_fans_heatwaves()

	Vertical air temperature gradient
	vertical_tmp_grad_ppd()

	Wet Bulb Globe Temperature Index (WBGT)
	wbgt()

	Wind chill index
	wc()

	Psychrometrics functions
	PsychrometricValues

	enthalpy()

	p_sat()

	p_sat_torr()

	psy_ta_rh()

	t_dp()

	t_mrt()

	t_o()

	t_wb()

	Utilities functions
	Body Surface Area
	body_surface_area()

	Relative air speed
	v_relative()

	Dynamic clothing
	clo_dynamic()

	Running mean outdoor temperature
	running_mean_outdoor_temperature()

	Units converter
	units_converter()

	Sky-vault view fraction
	f_svv()

	Reference values clo and met
	Met typical tasks, [met]
	met_typical_tasks

	Clothing insulation of typical ensembles, [clo]
	clo_typical_ensembles

	Insulation of individual garments, [clo]
	clo_individual_garments

 Comfort models

Comfort models

Adaptive ASHRAE

	
pythermalcomfort.models.adaptive_ashrae.adaptive_ashrae(tdb, tr, t_running_mean, v, units='SI', limit_inputs=True)

	Determines the adaptive thermal comfort based on ASHRAE 55. The adaptive
model relates indoor design temperatures or acceptable temperature ranges
to outdoor meteorological or climatological parameters. The adaptive model
can only be used in occupant-controlled naturally conditioned spaces that
meet all the following criteria:

	There is no mechianical cooling or heating system in operation

	Occupants have a metabolic rate between 1.0 and 1.5 met

	Occupants are free to adapt their clothing within a range as wide as 0.5 and 1.0 clo

	The prevailing mean (runnin mean) outdoor temperature is between 10 and 33.5 °C

	Parameters

	
	tdb (float, int, or array-like) – dry bulb air temperature, default in [°C] in [°F] if units = ‘IP’

	tr (float, int, or array-like) – mean radiant temperature, default in [°C] in [°F] if units = ‘IP’

	t_running_mean (float, int, or array-like) – running mean temperature, default in [°C] in [°C] in [°F] if units = ‘IP’

The running mean temperature can be calculated using the function
pythermalcomfort.utilities.running_mean_outdoor_temperature().

	v (float, int, or array-like) – air speed, default in [m/s] in [fps] if units = ‘IP’

	units (str, optional) – select the SI (International System of Units) or the IP (Imperial Units) system.
Supported values are ‘SI’ and ‘IP’. Defaults to ‘SI’.

	limit_inputs (boolean default True) – By default, if the inputs are outsude the standard applicability limits the
function returns nan. If False returns pmv and ppd values even if input values are
outside the applicability limits of the model.

The ASHRAE 55 2020 limits are 10 < tdb [°C] < 40, 10 < tr [°C] < 40,
0 < vr [m/s] < 2, 10 < t running mean [°C] < 33.5

	Returns

	
	tmp_cmf (float, int, or array-like) – Comfort temperature a that specific running mean temperature, default in [°C]
or in [°F]

	tmp_cmf_80_low (float, int, or array-like) – Lower acceptable comfort temperature for 80% occupants, default in [°C] or in [°F]

	tmp_cmf_80_up (float, int, or array-like) – Upper acceptable comfort temperature for 80% occupants, default in [°C] or in [°F]

	tmp_cmf_90_low (float, int, or array-like) – Lower acceptable comfort temperature for 90% occupants, default in [°C] or in [°F]

	tmp_cmf_90_up (float, int, or array-like) – Upper acceptable comfort temperature for 90% occupants, default in [°C] or in [°F]

	acceptability_80 (bol or array-like) – Acceptability for 80% occupants

	acceptability_90 (bol or array-like) – Acceptability for 90% occupants

Notes

You can use this function to calculate if your conditions are within the adaptive
thermal comfort region.
Calculations with comply with the ASHRAE 55 2020 Standard 1.

Examples

>>> from pythermalcomfort.models import adaptive_ashrae
>>> results = adaptive_ashrae(tdb=25, tr=25, t_running_mean=20, v=0.1)
>>> print(results)
{'tmp_cmf': 24.0, 'tmp_cmf_80_low': 20.5, 'tmp_cmf_80_up': 27.5,
'tmp_cmf_90_low': 21.5, 'tmp_cmf_90_up': 26.5, 'acceptability_80': array(True),
'acceptability_90': array(True)}

>>> print(results.acceptability_80) # or use print(results["acceptability_80"])
True
The conditions you entered are considered to be comfortable for by 80% of the
occupants

>>> # You can also pass arrays as input to the function
>>> results = adaptive_ashrae(tdb=[25, 26], tr=25, t_running_mean=20, v=0.1)
>>> print(results)
{'tmp_cmf': 24.0, 'tmp_cmf_80_low': 20.5, 'tmp_cmf_80_up': 27.5,
'tmp_cmf_90_low': 21.5, 'tmp_cmf_90_up': 26.5, 'acceptability_80': array(True),
'acceptability_90': array(True)}

>>> # for users who want to use the IP system
>>> results = adaptive_ashrae(tdb=77, tr=77, t_running_mean=68, v=0.3, units='ip')
>>> print(results)
{'tmp_cmf': 75.2, 'tmp_cmf_80_low': 68.9, 'tmp_cmf_80_up': 81.5,
'tmp_cmf_90_low': 70.7, 'tmp_cmf_90_up': 79.7, 'acceptability_80': array(True),
'acceptability_90': array(True)}

>>> adaptive_ashrae(tdb=25, tr=25, t_running_mean=9, v=0.1)
{'tmp_cmf': nan, 'tmp_cmf_80_low': nan, ... }
The adaptive thermal comfort model can only be used
if the running mean temperature is higher than 10°C

Adaptive EN

	
pythermalcomfort.models.adaptive_en.adaptive_en(tdb, tr, t_running_mean, v, units='SI', limit_inputs=True)

	Determines the adaptive thermal comfort based on EN 16798-1 2019 3

	Parameters

	
	tdb (float, int, or array-like) – dry bulb air temperature, default in [°C] in [°F] if units = ‘IP’

	tr (float, int, or array-like) – mean radiant temperature, default in [°C] in [°F] if units = ‘IP’

	t_running_mean (float, int, or array-like) – running mean temperature, default in [°C] in [°C] in [°F] if units = ‘IP’

The running mean temperature can be calculated using the function
pythermalcomfort.utilities.running_mean_outdoor_temperature().

	v (float, int, or array-like) – air speed, default in [m/s] in [fps] if units = ‘IP’

Note: Indoor operative temperature correction is applicable for buildings equipped
with fans or personal systems providing building occupants with personal
control over air speed at occupant level.
For operative temperatures above 25°C the comfort zone upper limit can be
increased by 1.2 °C (0.6 < v < 0.9 m/s), 1.8 °C (0.9 < v < 1.2 m/s), 2.2 °C (v
> 1.2 m/s)

	units ({‘SI’, ‘IP’}) – select the SI (International System of Units) or the IP (Imperial Units) system.

	limit_inputs (boolean default True) – By default, if the inputs are outsude the standard applicability limits the
function returns nan. If False returns pmv and ppd values even if input values are
outside the applicability limits of the model.

	Returns

	
	tmp_cmf (float, int, or array-like) – Comfort temperature at that specific running mean temperature, default in [°C]
or in [°F]

	acceptability_cat_i (bol or array-like) – If the indoor conditions comply with comfort category I

	acceptability_cat_ii (bol or array-like) – If the indoor conditions comply with comfort category II

	acceptability_cat_iii (bol or array-like) – If the indoor conditions comply with comfort category III

	tmp_cmf_cat_i_up (float, int, or array-like) – Upper acceptable comfort temperature for category I, default in [°C] or in [°F]

	tmp_cmf_cat_ii_up (float, int, or array-like) – Upper acceptable comfort temperature for category II, default in [°C] or in [°F]

	tmp_cmf_cat_iii_up (float, int, or array-like) – Upper acceptable comfort temperature for category III, default in [°C] or in [°F]

	tmp_cmf_cat_i_low (float, int, or array-like) – Lower acceptable comfort temperature for category I, default in [°C] or in [°F]

	tmp_cmf_cat_ii_low (float, int, or array-like) – Lower acceptable comfort temperature for category II, default in [°C] or in [°F]

	tmp_cmf_cat_iii_low (float or array-like) – Lower acceptable comfort temperature for category III, default in [°C] or in [°F]

Notes

You can use this function to calculate if your conditions are within the EN
adaptive thermal comfort region.
Calculations with comply with the EN 16798-1 2019 3.

Examples

>>> from pythermalcomfort.models import adaptive_en
>>> results = adaptive_en(tdb=25, tr=25, t_running_mean=20, v=0.1)
>>> print(results)
{'tmp_cmf': 25.4, 'acceptability_cat_i': True, 'acceptability_cat_ii': True, ... }

>>> print(results['acceptability_cat_i'])
True
The conditions you entered are considered to comply with Category I

>>> # for users who wants to use the IP system
>>> results = adaptive_en(tdb=77, tr=77, t_running_mean=68, v=0.3, units='ip')
>>> print(results)
{'tmp_cmf': 77.7, 'acceptability_cat_i': True, 'acceptability_cat_ii': True, ... }

>>> results = adaptive_en(tdb=25, tr=25, t_running_mean=9, v=0.1)
{'tmp_cmf': nan, 'acceptability_cat_i': True, 'acceptability_cat_ii': True, ... }
The adaptive thermal comfort model can only be used
if the running mean temperature is between 10 °C and 30 °C

Adaptive Predicted Mean Vote (aPMV)

	
pythermalcomfort.models.a_pmv.a_pmv(tdb, tr, vr, rh, met, clo, a_coefficient, wme=0, units='SI', limit_inputs=True)

	Returns Adaptive Predicted Mean Vote (aPMV) 25. This index was
developed by Yao, R. et al. (2009). The model takes into account factors
such as culture, climate, social, psychological and behavioural
adaptations, which have an impact on the senses used to detect thermal
comfort. This model uses an adaptive coefficient (λ) representing the
adaptive factors that affect the sense of thermal comfort.

	Parameters

	
	tdb (float, int, or array-like) – dry bulb air temperature, default in [°C] in [°F] if units = ‘IP’

	tr (float, int, or array-like) – mean radiant temperature, default in [°C] in [°F] if units = ‘IP’

	vr (float, int, or array-like) – relative air speed, default in [m/s] in [fps] if units = ‘IP’

Note: vr is the relative air speed caused by body movement and not the air
speed measured by the air speed sensor. The relative air speed is the sum of the
average air speed measured by the sensor plus the activity-generated air speed
(Vag). Where Vag is the activity-generated air speed caused by motion of
individual body parts. vr can be calculated using the function
pythermalcomfort.utilities.v_relative().

	rh (float, int, or array-like) – relative humidity, [%]

	met (float, int, or array-like) – metabolic rate, [met]

	clo (float, int, or array-like) – clothing insulation, [clo]

Note: The activity as well as the air speed modify the insulation characteristics
of the clothing and the adjacent air layer. Consequently, the ISO 7730 states that
the clothing insulation shall be corrected 2. The ASHRAE 55 Standard corrects
for the effect of the body movement for met equal or higher than 1.2 met using
the equation clo = Icl × (0.6 + 0.4/met) The dynamic clothing insulation, clo,
can be calculated using the function
pythermalcomfort.utilities.clo_dynamic().

	a_coefficient (float) – adaptive coefficient

	wme (float, int, or array-like) – external work, [met] default 0

	units (str, optional) – select the SI (International System of Units) or the IP (Imperial Units) system.
Supported values are ‘SI’ and ‘IP’. Defaults to ‘SI’.

	limit_inputs (boolean default True) – By default, if the inputs are outsude the standard applicability limits the
function returns nan. If False returns pmv and ppd values even if input values are
outside the applicability limits of the model.

The ISO 7730 2005 limits are 10 < tdb [°C] < 30, 10 < tr [°C] < 40,
0 < vr [m/s] < 1, 0.8 < met [met] < 4, 0 < clo [clo] < 2, and -2 < PMV < 2.

	Returns

	pmv (float, int, or array-like) – Predicted Mean Vote

Examples

>>> from pythermalcomfort.models import a_pmv
>>> from pythermalcomfort.utilities import v_relative, clo_dynamic
>>> v = 0.1
>>> met = 1.4
>>> clo = 0.5
>>> # calculate relative air speed
>>> v_r = v_relative(v=v, met=met)
>>> # calculate dynamic clothing
>>> clo_d = clo_dynamic(clo=clo, met=met)
>>> results = a_pmv(tdb=28, tr=28, vr=v_r, rh=50, met=met, clo=clo_d, a_coefficient=0.293)
>>> print(results)
0.74

Adaptive Thermal Heat Balance (ATHB)

	
pythermalcomfort.models.athb.athb(tdb, tr, vr, rh, met, t_running_mean)

	Return the PMV value calculated with the Adaptive Thermal Heat Balance
Framework 27. The adaptive thermal heat balance (ATHB) framework
introduced a method to account for the three adaptive principals, namely
physiological, behavioral, and psychological adaptation, individually
within existing heat balance models. The objective is a predictive model of
thermal sensation applicable during the design stage or in international
standards without knowing characteristics of future occupants.

	Parameters

	
	tdb (float, int, or array-like) – dry bulb air temperature, in [°C]

	tr (float, int, or array-like) – mean radiant temperature, in [°C]

	vr (float, int, or array-like) – relative air speed, in [m/s]

Note: vr is the relative air speed caused by body movement and not the air
speed measured by the air speed sensor. The relative air speed is the sum of the
average air speed measured by the sensor plus the activity-generated air speed
(Vag). Where Vag is the activity-generated air speed caused by motion of
individual body parts. vr can be calculated using the function
pythermalcomfort.utilities.v_relative().

	rh (float, int, or array-like) – relative humidity, [%]

	met (float, int, or array-like) – metabolic rate, [met]

	t_running_mean (float or array-like) – running mean temperature, in [°C]

The running mean temperature can be calculated using the function
pythermalcomfort.utilities.running_mean_outdoor_temperature().

	Returns

	athb_pmv (float or array-like) – Predicted Mean Vote calculated with the Adaptive Thermal Heat Balance framework

Examples

>>> from pythermalcomfort.models import athb
>>> print(athb(tdb=[25, 27], tr=25, vr=0.1, rh=50, met=1.1, t_running_mean=20))
[0.2, 0.209]

Adjusted Predicted Mean Votes with Expectancy Factor (ePMV)

	
pythermalcomfort.models.e_pmv.e_pmv(tdb, tr, vr, rh, met, clo, e_coefficient, wme=0, **kwargs)

	Returns Adjusted Predicted Mean Votes with Expectancy Factor (ePMV).
This index was developed by Fanger, P. O. et al. (2002). In non-air-
conditioned buildings in warm climates, occupants may sense the warmth as
being less severe than the PMV predicts. The main reason is low
expectations, but a metabolic rate that is estimated too high can also
contribute to explaining the difference. An extension of the PMV model that
includes an expectancy factor is introduced for use in non-air-conditioned
buildings in warm climates 26.

	Parameters

	
	tdb (float, int, or array-like) – dry bulb air temperature, default in [°C] in [°F] if units = ‘IP’

	tr (float, int, or array-like) – mean radiant temperature, default in [°C] in [°F] if units = ‘IP’

	vr (float, int, or array-like) – relative air speed, default in [m/s] in [fps] if units = ‘IP’

Note: vr is the relative air speed caused by body movement and not the air
speed measured by the air speed sensor. The relative air speed is the sum of the
average air speed measured by the sensor plus the activity-generated air speed
(Vag). Where Vag is the activity-generated air speed caused by motion of
individual body parts. vr can be calculated using the function
pythermalcomfort.utilities.v_relative().

	rh (float, int, or array-like) – relative humidity, [%]

	met (float, int, or array-like) – metabolic rate, [met]

	clo (float, int, or array-like) – clothing insulation, [clo]

Note: The activity as well as the air speed modify the insulation characteristics
of the clothing and the adjacent air layer. Consequently, the ISO 7730 states that
the clothing insulation shall be corrected 2. The ASHRAE 55 Standard corrects
for the effect of the body movement for met equal or higher than 1.2 met using
the equation clo = Icl × (0.6 + 0.4/met) The dynamic clothing insulation, clo,
can be calculated using the function
pythermalcomfort.utilities.clo_dynamic().

	e_coefficient (float) – expectacy factor

	wme (float, int, or array-like) – external work, [met] default 0

	Other Parameters

	
	units ({‘SI’, ‘IP’}) – select the SI (International System of Units) or the IP (Imperial Units) system.

	limit_inputs (boolean default True) – By default, if the inputs are outsude the standard applicability limits the
function returns nan. If False returns pmv and ppd values even if input values are
outside the applicability limits of the model.

The ISO 7730 2005 limits are 10 < tdb [°C] < 30, 10 < tr [°C] < 40,
0 < vr [m/s] < 1, 0.8 < met [met] < 4, 0 < clo [clo] < 2, and -2 < PMV < 2.

	Returns

	pmv (float, int, or array-like) – Predicted Mean Vote

Examples

>>> from pythermalcomfort.models import a_pmv
>>> from pythermalcomfort.utilities import v_relative, clo_dynamic
>>> tdb = 28
>>> tr = 28
>>> rh = 50
>>> v = 0.1
>>> met = 1.4
>>> clo = 0.5
>>> # calculate relative air speed
>>> v_r = v_relative(v=v, met=met)
>>> # calculate dynamic clothing
>>> clo_d = clo_dynamic(clo=clo, met=met)
>>> results = e_pmv(tdb, tr, v_r, rh, met, clo_d, e_coefficient=0.6)
>>> print(results)
0.51

Apparent Temperature (AT)

	
pythermalcomfort.models.at.at(tdb, rh, v, q=None, **kwargs)

	Calculates the Apparent Temperature (AT). The AT is defined as the
temperature at the reference humidity level producing the same amount of
discomfort as that experienced under the current ambient temperature,
humidity, and solar radiation 17. In other words, the AT is an
adjustment to the dry bulb temperature based on the relative humidity
value. Absolute humidity with a dew point of 14°C is chosen as a reference.

16. It includes the chilling effect of the wind at lower temperatures.

Two formulas for AT are in use by the Australian Bureau of Meteorology: one includes
solar radiation and the other one does not (http://www.bom.gov.au/info/thermal_stress/
, 29 Sep 2021). Please specify q if you want to estimate AT with solar load.

	Parameters

	
	tdb (float) – dry bulb air temperature,[°C]

	rh (float) – relative humidity, [%]

	v (float) – wind speed 10m above ground level, [m/s]

	q (float) – Net radiation absorbed per unit area of body surface [W/m2]

	Other Parameters

	round (boolean, default True) – if True rounds output value, if False it does not round it

	Returns

	at (float) – apparent temperature, [°C]

Examples

>>> from pythermalcomfort.models import at
>>> at(tdb=25, rh=30, v=0.1)
24.1

Ankle draft

	
pythermalcomfort.models.ankle_draft.ankle_draft(tdb, tr, vr, rh, met, clo, v_ankle, units='SI')

	Calculates the percentage of thermally dissatisfied people with the ankle draft (
0.1 m) above floor level 23.
This equation is only applicable for vr < 0.2 m/s (40 fps).

	Parameters

	
	tdb (float) – dry bulb air temperature, default in [°C] in [°F] if units = ‘IP’

Note: The air temperature is the average value over two heights: 0.6 m (24 in.)
and 1.1 m (43 in.) for seated occupants
and 1.1 m (43 in.) and 1.7 m (67 in.) for standing occupants.

	tr (float) – mean radiant temperature, default in [°C] in [°F] if units = ‘IP’

	vr (float) – relative air speed, default in [m/s] in [fps] if units = ‘IP’

Note: vr is the relative air speed caused by body movement and not the air
speed measured by the air speed sensor. The relative air speed is the sum of the
average air speed measured by the sensor plus the activity-generated air speed
(Vag). Where Vag is the activity-generated air speed caused by motion of
individual body parts. vr can be calculated using the function
pythermalcomfort.utilities.v_relative().

	rh (float) – relative humidity, [%]

	met (float) – metabolic rate, [met]

	clo (float) – clothing insulation, [clo]

Note: The activity as well as the air speed modify the insulation characteristics
of the clothing and the adjacent air layer. Consequently, the ISO 7730 states that
the clothing insulation shall be corrected 2. The ASHRAE 55 Standard corrects
for the effect of the body movement for met equal or higher than 1.2 met using
the equation clo = Icl × (0.6 + 0.4/met) The dynamic clothing insulation, clo,
can be calculated using the function
pythermalcomfort.utilities.clo_dynamic().

	v_ankle (float) – air speed at the 0.1 m (4 in.) above the floor, default in [m/s] in [fps] if
units = ‘IP’

	units ({‘SI’, ‘IP’}) – select the SI (International System of Units) or the IP (Imperial Units) system.

	Returns

	
	PPD_ad (float) – Predicted Percentage of Dissatisfied occupants with ankle draft, [%]

	Acceptability (bol) – The ASHRAE 55 2020 standard defines that the value of air speed at the ankle
level is acceptable if PPD_ad is lower or equal than 20 %

Examples

>>> from pythermalcomfort.models import ankle_draft
>>> results = ankle_draft(25, 25, 0.2, 50, 1.2, 0.5, 0.3, units="SI")
>>> print(results)
{'PPD_ad': 18.5, 'Acceptability': True}

Clothing prediction

	
pythermalcomfort.models.clo_tout.clo_tout(tout, units='SI')

	Representative clothing insulation Icl as a function of outdoor air
temperature at 06:00 a.m 4.

	Parameters

	
	tout (float, int, or array-like) – outdoor air temperature at 06:00 a.m., default in [°C] in [°F] if units = ‘IP’

	units (str, optional) – select the SI (International System of Units) or the IP (Imperial Units) system.
Supported values are ‘SI’ and ‘IP’. Defaults to ‘SI’.

	Returns

	clo (float, int, or array-like) – Representative clothing insulation Icl, [clo]

	Raises

	
	TypeError – If tout is not a float, int, NumPy array, or a list of floats or integers.

	ValueError – If an invalid unit is provided or non-numeric elements are found in tout.

Notes

The ASHRAE 55 2020 states that it is acceptable to determine the clothing
insulation Icl using this equation in mechanically conditioned buildings 1.

	Limitations:
	
	This equation may not be accurate for extreme temperature ranges.

Examples

>>> from pythermalcomfort.models import clo_tout
>>> clo_tout(tout=27) # Can be int or float
0.46
>>> clo_tout(tout=[27, 25]) # List of ints or floats
array([0.46, 0.47])

Cooling Effect (CE)

	
pythermalcomfort.models.cooling_effect.cooling_effect(tdb, tr, vr, rh, met, clo, wme=0, units='SI')

	Returns the value of the Cooling Effect (CE [https://en.wikipedia.org/wiki/Thermal_comfort#Cooling_Effect]) calculated in compliance
with the ASHRAE 55 2020 Standard 1. The CE [https://en.wikipedia.org/wiki/Thermal_comfort#Cooling_Effect] of the elevated air speed
is the value that, when subtracted equally from both the average air
temperature and the mean radiant temperature, yields the same SET [https://en.wikipedia.org/wiki/Thermal_comfort#Standard_effective_temperature] under
still air as in the first SET [https://en.wikipedia.org/wiki/Thermal_comfort#Standard_effective_temperature] calculation under elevated air speed. The
cooling effect is calculated only for air speed higher than 0.1 m/s.

	Parameters

	
	tdb (float) – dry bulb air temperature, default in [°C] in [°F] if units = ‘IP’

	tr (float) – mean radiant temperature, default in [°C] in [°F] if units = ‘IP’

	vr (float) – relative air speed, default in [m/s] in [fps] if units = ‘IP’

Note: vr is the relative air speed caused by body movement and not the air
speed measured by the air speed sensor. The relative air speed is the sum of the
average air speed measured by the sensor plus the activity-generated air speed
(Vag). Where Vag is the activity-generated air speed caused by motion of
individual body parts. vr can be calculated using the function
pythermalcomfort.utilities.v_relative().

	rh (float) – relative humidity, [%]

	met (float) – metabolic rate, [met]

	clo (float) – clothing insulation, [clo]

Note: The activity as well as the air speed modify the insulation characteristics
of the clothing and the adjacent air layer. Consequently the ISO 7730 states that
the clothing insulation shall be corrected 2. The ASHRAE 55 Standard corrects
for the effect of the body movement for met equal or higher than 1.2 met using
the equation clo = Icl × (0.6 + 0.4/met) The dynamic clothing insulation, clo,
can be calculated using the function
pythermalcomfort.utilities.clo_dynamic().

	wme (float, default 0) – external work, [met]

	units ({‘SI’, ‘IP’} select the SI (International System of Units) or the IP (Imperial Units) system.)

	Returns

	ce (float) – Cooling Effect, default in [°C] in [°F] if units = ‘IP’

Examples

>>> from pythermalcomfort.models import cooling_effect
>>> CE = cooling_effect(tdb=25, tr=25, vr=0.3, rh=50, met=1.2, clo=0.5)
>>> print(CE)
1.64

>>> # for users who wants to use the IP system
>>> CE = cooling_effect(tdb=77, tr=77, vr=1.64, rh=50, met=1, clo=0.6, units="IP")
>>> print(CE)
3.74

	Raises

	ValueError – If the cooling effect could not be calculated

Discomfort Index (DI)

	
pythermalcomfort.models.discomfort_index.discomfort_index(tdb, rh)

	Calculates the Discomfort Index (DI). The index is essentially an
effective temperature based on air temperature and humidity. The discomfort
index is usuallly divided in 6 dicomfort categories and it only applies to
warm environments: 24

	class 1 - DI < 21 °C - No discomfort

	class 2 - 21 <= DI < 24 °C - Less than 50% feels discomfort

	class 3 - 24 <= DI < 27 °C - More than 50% feels discomfort

	class 4 - 27 <= DI < 29 °C - Most of the population feels discomfort

	class 5 - 29 <= DI < 32 °C - Everyone feels severe stress

	class 6 - DI >= 32 °C - State of medical emergency

	Parameters

	
	tdb (float, int, or array-like) – dry bulb air temperature, [°C]

	rh (float, int, or array-like) – relative humidity, [%]

	Returns

	
	di (float, int, or array-like) – Discomfort Index, [°C]

	discomfort_condition (str or array-like) – Classification of the thermal comfort conditions according to the discomfort index

Examples

>>> from pythermalcomfort.models import discomfort_index
>>> discomfort_index(tdb=25, rh=50)
{'di': 22.1, 'discomfort_condition': 'Less than 50% feels discomfort'}

Heat Index (HI)

	
pythermalcomfort.models.heat_index.heat_index(tdb, rh, **kwargs)

	Calculates the Heat Index (HI). It combines air temperature and relative
humidity to determine an apparent temperature. The HI equation 12 is
derived by multiple regression analysis in temperature and relative
humidity from the first version of Steadman’s (1979) apparent temperature
(AT) 13.

	Parameters

	
	tdb (float) – dry bulb air temperature, default in [°C] in [°F] if units = ‘IP’

	rh (float) – relative humidity, [%]

	Other Parameters

	
	round (boolean, default True) – if True rounds output value, if False it does not round it

	units ({‘SI’, ‘IP’}) – select the SI (International System of Units) or the IP (Imperial Units) system.

	Returns

	hi (float) – Heat Index, default in [°C] in [°F] if units = ‘IP’

Examples

>>> from pythermalcomfort.models import heat_index
>>> heat_index(tdb=25, rh=50)
25.9

Humidex

	
pythermalcomfort.models.humidex.humidex(tdb, rh, **kwargs)

	Calculates the humidex (short for “humidity index”). It has been
developed by the Canadian Meteorological service. It was introduced in 1965
and then it was revised by Masterson and Richardson (1979) 14. It aims
to describe how hot, humid weather is felt by the average person. The
Humidex differs from the heat index in being related to the dew point
rather than relative humidity 15.

	Parameters

	
	tdb (float) – dry bulb air temperature, [°C]

	rh (float) – relative humidity, [%]

	Other Parameters

	round (boolean, default True) – if True rounds output value, if False it does not round it

	Returns

	
	humidex (float) – Heat Index, [°C]

	discomfort (str) – Degree of Comfort or Discomfort as defined in Havenith and Fiala (2016) 15

Examples

>>> from pythermalcomfort.models import humidex
>>> humidex(tdb=25, rh=50)
{"humidex": 28.2, "discomfort": "Little or no discomfort"}

Joint system thermoregulation model (JOS-3)

	
class pythermalcomfort.models.jos3.JOS3(height=1.72, weight=74.43, fat=15, age=20, sex='male', ci=2.59, bmr_equation='harris-benedict', bsa_equation='dubois', ex_output=None)

	JOS-3 model simulates human thermal physiology including skin
temperature, core temperature, sweating rate, etc. for the whole body and
17 local body parts.

This model was developed at Shin-ichi Tanabe Laboratory, Waseda University
and was derived from 65 Multi-Node model (https://doi.org/10.1016/S0378-7788(02)00014-2)
and JOS-2 model (https://doi.org/10.1016/j.buildenv.2013.04.013).

To use this model, create an instance of the JOS3 class with optional body parameters
such as body height, weight, age, sex, etc.

Environmental conditions such as air temperature, mean radiant temperature, air velocity, etc.
can be set using the setter methods. (ex. X.tdb, X.tr X.v)
If you want to set the different conditions in each body part, set them
as a 17 lengths of list, dictionary, or numpy array format.

List or numpy array format input must be 17 lengths and means the order of “head”, “neck”, “chest”,
“back”, “pelvis”, “left_shoulder”, “left_arm”, “left_hand”, “right_shoulder”, “right_arm”,
“right_hand”, “left_thigh”, “left_leg”, “left_foot”, “right_thigh”, “right_leg” and “right_foot”.

The model output includes local and mean skin temperature, local core temperature,
local and mean skin wettedness, and heat loss from the skin etc.
The model output can be accessed using “dict_results()” method and be converted to a csv file
using “to_csv” method.
Each output parameter also can be accessed using getter methods.
(ex. X.t_skin, X.t_skin_mean, X.t_core)

If you use this package, please cite us as follows and mention the version of pythermalcomfort used:
Y. Takahashi, A. Nomoto, S. Yoda, R. Hisayama, M. Ogata, Y. Ozeki, S. Tanabe,
Thermoregulation Model JOS-3 with New Open Source Code, Energy & Buildings (2020),
doi: https://doi.org/10.1016/j.enbuild.2020.110575

Note: To maintain consistency in variable names for pythermalcomfort,
some variable names differ from those used in the original paper.

	
__init__(height=1.72, weight=74.43, fat=15, age=20, sex='male', ci=2.59, bmr_equation='harris-benedict', bsa_equation='dubois', ex_output=None)

	Initialize a new instance of JOS3 class, which is designed to model
and simulate various physiological parameters related to human
thermoregulation.

This class uses mathematical models to calculate and predict
body temperature, basal metabolic rate, body surface area, and
other related parameters.

	Parameters

	
	height (float, optional) – body height, in [m]. The default is 1.72.

	weight (float, optional) – body weight, in [kg]. The default is 74.43.

	fat (float, optional) – fat percentage, in [%]. The default is 15.

	age (int, optional) – age, in [years]. The default is 20.

	sex (str, optional) – sex (“male” or “female”). The default is “male”.

	ci (float, optional) – Cardiac index, in [L/min/m2]. The default is 2.6432.

	bmr_equation (str, optional) – The equation used to calculate basal metabolic rate (BMR). Choose a BMR equation.
The default is “harris-benedict” equation created uding Caucasian’s data. (DOI: doi.org/10.1073/pnas.4.12.370)
If the Ganpule’s equation (DOI: doi.org/10.1038/sj.ejcn.1602645) for Japanese people is used, input “japanese”.

	bsa_equation (str, optional) – The equation used to calculate body surface area (bsa). Choose a bsa equation.
You can choose “dubois”, “fujimoto”, “kruazumi”, or “takahira”. The default is “dubois”.
The body surface area can be calculated using the function
pythermalcomfort.utilities.body_surface_area().

	ex_output (None, list or “all”, optional) – This is used when you want to display results other than the default output parameters (ex.skin temperature);
by default, JOS outputs only the most necessary parameters in order to reduce the computational load.
If the parameters other than the default output parameters are needed,
specify the list of the desired parameter names in string format like [“bf_skin”, “bf_core”, “t_artery”].
If you want to display all output results, set ex_output is “all”.

	Variables

	
	tdb (float, int, or array-like) – Dry bulb air temperature [°C].

	tr (float, int, or array-like) – Mean radiant temperature [°C].

	to (float, int, or array-like) – Operative temperature [°C].

	v (float, int, or array-like) – Air speed [m/s].

	rh (float, int, or array-like) – Relative humidity [%].

	clo (float or array-like) – Clothing insulation [clo].
Note: If you want to input clothing insulation to each body part,
it can be input using the dictionaly in “utilities.py” in “jos3_function” folder.
pythermalcomfort.jos3_functions.utilities.local_clo_typical_ensembles().

	par (float) – Physical activity ratio [-].
This equals the ratio of metabolic rate to basal metabolic rate.
The par of sitting quietly is 1.2.

	posture (str) – Body posture [-]. Choose a posture from standing, sitting or lying.

	body_temp (numpy.ndarray (85,)) – All segment temperatures of JOS-3

	
simulate(times, dtime, output):

	Run JOS-3 model for given times.

	
dict_results():

	Get results as a dictionary with pandas.DataFrame values.

	
to_csv(path=None, folder=None, unit=True, meaning=True):

	Export results as csv format.

	Returns

	
	cardiac_output (cardiac output (the sum of the whole blood flow) [L/h])

	cycle_time (the counts of executing one cycle calculation [-])

	dt (time step [sec])

	pythermalcomfort_version (version of pythermalcomfort [-])

	q_res (heat loss by respiration [W])

	q_skin2env (total heat loss from the skin (each body part) [W])

	q_thermogenesis_total (total thermogenesis of the whole body [W])

	simulation_time (simulation times [sec])

	t_core (core temperature (each body part) [°C])

	t_skin (skin temperature (each body part) [°C])

	t_skin_mean (mean skin temperature [°C])

	w (skin wettedness (each body part) [-])

	w_mean (mean skin wettedness [-])

	weight_loss_by_evap_and_res (weight loss by the evaporation and respiration of the whole body [g/sec])

	OPTIONAL PARAMETERS (the paramters listed below are returned if ex_output = “all”)

	age (age [years])

	bf_ava_foot (AVA blood flow rate of one foot [L/h])

	bf_ava_hand (AVA blood flow rate of one hand [L/h])

	bf_core (core blood flow rate (each body part) [L/h])

	bf_fat (fat blood flow rate (each body part) [L/h])

	bf_muscle (muscle blood flow rate (each body part) [L/h])

	bf_skin (skin blood flow rate (each body part) [L/h])

	bsa (body surface area (each body part) [m2])

	clo (clothing insulation (each body part) [clo])

	e_max (maximum evaporative heat loss from the skin (each body part) [W])

	e_skin (evaporative heat loss from the skin (each body part) [W])

	e_sweat (evaporative heat loss from the skin by only sweating (each body part) [W])

	fat (body fat rate [%])

	height (body height [m])

	name (name of the model [-])

	par (physical activity ratio [-])

	q_bmr_core (core thermogenesis by basal metabolism (each body part) [W])

	q_bmr_fat (fat thermogenesis by basal metabolism (each body part) [W])

	q_bmr_muscle (muscle thermogenesis by basal metabolism (each body part) [W])

	q_bmr_skin (skin thermogenesis by basal metabolism (each body part) [W])

	q_nst (core thermogenesis by non-shivering (each body part) [W])

	q_res_latent (latent heat loss by respiration (each body part) [W])

	q_res_sensible (sensible heat loss by respiration (each body part) [W])

	q_shiv (core or muscle thermogenesis by shivering (each body part) [W])

	q_skin2env_latent (latent heat loss from the skin (each body part) [W])

	q_skin2env_sensible (sensible heat loss from the skin (each body part) [W])

	q_thermogenesis_core (core total thermogenesis (each body part) [W])

	q_thermogenesis_fat (fat total thermogenesis (each body part) [W])

	q_thermogenesis_muscle (muscle total thermogenesis (each body part) [W])

	q_thermogenesis_skin (skin total thermogenesis (each body part) [W])

	q_work (core or muscle thermogenesis by work (each body part) [W])

	r_et (total clothing evaporative heat resistance (each body part) [(m2*kPa)/W])

	r_t (total clothing heat resistance (each body part) [(m2*K)/W])

	rh (relative humidity (each body part) [%])

	sex (sex [-])

	t_artery (arterial temperature (each body part) [°C])

	t_cb (central blood temperature [°C])

	t_core_set (core set point temperature (each body part) [°C])

	t_fat (fat temperature (each body part) [°C])

	t_muscle (muscle temperature (each body part) [°C])

	t_skin_set (skin set point temperature (each body part) [°C])

	t_superficial_vein (superficial vein temperature (each body part) [°C])

	t_vein (vein temperature (each body part) [°C])

	tdb (dry bulb air temperature (each body part) [°C])

	to (operative temperature (each body part) [°C])

	tr (mean radiant temperature (each body part) [°C])

	v (air velocity (each body part) [m/s])

	weight (body weight [kg])

Examples

Build a model and set a body built
Create an instance of the JOS3 class with optional body parameters such as body height, weight, age, sex, etc.

>>> import numpy as np
>>> import pandas as pd
>>> import matplotlib.pyplot as plt
>>> import os
>>> from pythermalcomfort.models import JOS3
>>> from pythermalcomfort.jos3_functions.utilities import local_clo_typical_ensembles
>>>
>>> directory_name = "jos3_output_example"
>>> current_directory = os.getcwd()
>>> jos3_example_directory = os.path.join(current_directory, directory_name)
>>> if not os.path.exists(jos3_example_directory):
>>> os.makedirs(jos3_example_directory)
>>>
>>> model = JOS3(
>>> height=1.7,
>>> weight=60,
>>> fat=20,
>>> age=30,
>>> sex="male",
>>> bmr_equation="japanese",
>>> bsa_equation="fujimoto",
>>> ex_output="all",
>>>)
>>> # Set environmental conditions such as air temperature, mean radiant temperature using the setter methods.
>>> # Set the first condition
>>> # Environmental parameters can be input as int, float, list, dict, numpy array format.
>>> model.tdb = 28 # Air temperature [°C]
>>> model.tr = 30 # Mean radiant temperature [°C]
>>> model.rh = 40 # Relative humidity [%]
>>> model.v = np.array(# Air velocity [m/s]
>>> [
>>> 0.2, # head
>>> 0.4, # neck
>>> 0.4, # chest
>>> 0.1, # back
>>> 0.1, # pelvis
>>> 0.4, # left shoulder
>>> 0.4, # left arm
>>> 0.4, # left hand
>>> 0.4, # right shoulder
>>> 0.4, # right arm
>>> 0.4, # right hand
>>> 0.1, # left thigh
>>> 0.1, # left leg
>>> 0.1, # left foot
>>> 0.1, # right thigh
>>> 0.1, # right leg
>>> 0.1, # right foot
>>>]
>>>)
>>> model.clo = local_clo_typical_ensembles["briefs, socks, undershirt, work jacket, work pants, safety shoes"]["local_body_part"]
>>> # par should be input as int, float.
>>> model.par = 1.2 # Physical activity ratio [-], assuming a sitting position
>>> # posture should be input as int (0, 1, or 2) or str ("standing", "sitting" or "lying").
>>> # (0="standing", 1="sitting" or 2="lying")
>>> model.posture = "sitting" # Posture [-], assuming a sitting position
>>>
>>> # Run JOS-3 model
>>> model.simulate(
>>> times=30, # Number of loops of a simulation
>>> dtime=60, # Time delta [sec]. The default is 60.
>>>) # Exposure time = 30 [loops] * 60 [sec] = 30 [min]
>>> # Set the next condition (You only need to change the parameters that you want to change)
>>> model.to = 20 # Change operative temperature
>>> model.v = { # Air velocity [m/s], assuming to use a desk fan
>>> 'head' : 0.2,
>>> 'neck' : 0.4,
>>> 'chest' : 0.4,
>>> 'back': 0.1,
>>> 'pelvis' : 0.1,
>>> 'left_shoulder' : 0.4,
>>> 'left_arm' : 0.4,
>>> 'left_hand' : 0.4,
>>> 'right_shoulder' : 0.4,
>>> 'right_arm' : 0.4,
>>> 'right_hand' : 0.4,
>>> 'left_thigh' : 0.1,
>>> 'left_leg' : 0.1,
>>> 'left_foot' : 0.1,
>>> 'right_thigh' : 0.1,
>>> 'right_leg' : 0.1,
>>> 'right_foot' : 0.1
>>> }
>>> # Run JOS-3 model
>>> model.simulate(
>>> times=60, # Number of loops of a simulation
>>> dtime=60, # Time delta [sec]. The default is 60.
>>>) # Additional exposure time = 60 [loops] * 60 [sec] = 60 [min]
>>> # Set the next condition (You only need to change the parameters that you want to change)
>>> model.tdb = 30 # Change air temperature [°C]
>>> model.tr = 35 # Change mean radiant temperature [°C]
>>> # Run JOS-3 model
>>> model.simulate(
>>> times=30, # Number of loops of a simulation
>>> dtime=60, # Time delta [sec]. The default is 60.
>>>) # Additional exposure time = 30 [loops] * 60 [sec] = 30 [min]
>>> # Show the results
>>> df = pd.DataFrame(model.dict_results()) # Make pandas.DataFrame
>>> df[["t_skin_mean", "t_skin_head", "t_skin_chest", "t_skin_left_hand"]].plot() # Plot time series of local skin temperature.
>>> plt.legend(["Mean", "Head", "Chest", "Left hand"]) # Reset the legends
>>> plt.ylabel("Skin temperature [°C]") # Set y-label as 'Skin temperature [°C]'
>>> plt.xlabel("Time [min]") # Set x-label as 'Time [min]'
>>> plt.savefig(os.path.join(jos3_example_directory, "jos3_example2_skin_temperatures.png")) # Save plot at the current directory
>>> plt.show() # Show the plot
>>> # Exporting the results as csv
>>> model.to_csv(os.path.join(jos3_example_directory, "jos3_example2 (all output).csv"))

	
property bmr

	float Basal metabolic rate [W/m2].

	Type

	bmr

	
property body_names

	list JOS3 body names

	Type

	body_names

	
property body_temp

	numpy.ndarray (85,) All segment temperatures of JOS-3

	Type

	body_temp

	
property bsa

	numpy.ndarray (17,) Body surface areas by local body segments [m2].

	Type

	bsa

	
property clo

	numpy.ndarray (17,) Clothing insulation [clo].

	Type

	clo

	
dict_results()

	Get results as a dictionary with pandas.DataFrame values.

	Returns

	dict – A dictionary of the results, with keys as column names and values as pandas.DataFrame objects.

	
property par

	float Physical activity ratio [-].This equals the ratio of metabolic rate to basal metabolic rate. par of sitting quietly is 1.2.

	Type

	par

	
property posture

	str Current JOS3 posture.

	Type

	posture

	
property r_et

	numpy.ndarray (17,) w (Evaporative) heat resistances between the skin and ambience areas by local body segments [(m2*kPa)/W].

	Type

	r_et

	
property r_t

	numpy.ndarray (17,) Dry heat resistances between the skin and ambience areas by local body segments [(m2*K)/W].

	Type

	r_t

	
property results

	dict.

	Type

	Results of the model

	
property rh

	numpy.ndarray (17,) Relative humidity [%].

	Type

	rh

	
simulate(times, dtime=60, output=True)

	Run JOS-3 model.

	Parameters

	
	times (int) – Number of loops of a simulation.

	dtime (int or float, optional) – Time delta in seconds. The default is 60.

	output (bool, optional) – If you don’t want to record parameters, set False. The default is True.

	Returns

	None.

	
property t_artery

	numpy.ndarray (17,) Arterial temperatures by the local body segments [°C].

	Type

	t_artery

	
property t_cb

	numpy.ndarray (1,) Temperature at central blood pool [°C].

	Type

	t_cb

	
property t_core

	numpy.ndarray (17,) Skin temperatures by the local body segments [°C].

	Type

	t_core

	
property t_fat

	numpy.ndarray (2,) fat temperatures of head and pelvis [°C].

	Type

	t_fat

	
property t_muscle

	numpy.ndarray (2,) Muscle temperatures of head and pelvis [°C].

	Type

	t_muscle

	
property t_skin

	numpy.ndarray (17,) Skin temperatures by the local body segments [°C].

	Type

	t_skin

	
property t_skin_mean

	float Mean skin temperature of the whole body [°C].

	Type

	t_skin_mean

	
property t_superficial_vein

	numpy.ndarray (12,) Superficial vein temperatures by the local body segments [°C].

	Type

	t_superficial_vein

	
property t_vein

	numpy.ndarray (17,) Vein temperatures by the local body segments [°C].

	Type

	t_vein

	
property tdb

	Dry-bulb air temperature. The setter accepts int, float, dict, list,
ndarray. The inputs are used to create a 17-element array. dict should
be passed with BODY_NAMES as keys.

	Returns

	ndarray – A NumPy array of shape (17,).

	
property to

	numpy.ndarray (17,) Operative temperature [°C].

	Type

	to

	
to_csv(path=None, folder=None, unit=True, meaning=True)

	Export results as csv format.

	Parameters

	
	path (str, optional) – Output path. If you don’t use the default file name, set a name.
The default is None.

	folder (str, optional) – Output folder. If you use the default file name with the current time,
set a only folder path.
The default is None.

	unit (bool, optional) – Write units in csv file. The default is True.

	meaning (bool, optional) – Write meanings of the parameters in csv file. The default is True.

	Returns

	None

Examples

>>> from pythermalcomfort.models import JOS3
>>> model = JOS3()
>>> model.simulate(60)
>>> model.to_csv()

	
property tr

	numpy.ndarray (17,) Mean radiant temperature [°C].

	Type

	tr

	
property v

	numpy.ndarray (17,) Air velocity [m/s].

	Type

	v

	
property version

	float The current version of pythermalcomfort.

	Type

	version

	
property w

	numpy.ndarray (17,) Skin wettedness on local body segments [-].

	Type

	w

	
property w_mean

	float Mean skin wettedness of the whole body [-].

	Type

	w_mean

Normal Effective Temperature (NET)

	
pythermalcomfort.models.net.net(tdb, rh, v, **kwargs)

	Calculates the Normal Effective Temperature (NET). Missenard (1933)
devised a formula for calculating effective temperature. The index
establishes a link between the same condition of the organism’s
thermoregulatory capability (warm and cold perception) and the surrounding
environment’s temperature and humidity. The index is calculated as a
function of three meteorological factors: air temperature, relative
humidity of air, and wind speed. This index allows to calculate the
effective temperature felt by a person. Missenard original equation was
then used to calculate the Normal Effective Temperature (NET), by
considering normal atmospheric pressure and a normal human body temperature
(37°C). The NET is still in use in Germany, where medical check-ups for
subjects working in the heat are decided on by prevailing levels of ET,
depending on metabolic rates. The NET is also constantly monitored by the
Hong Kong Observatory 16. In central Europe the following thresholds are
in use: <1°C = very cold; 1–9 = cold; 9–17 = cool; 17–21 = fresh; 21–23 = comfortable;
23–27 = warm; >27°C = hot 16.

	Parameters

	
	tdb (float,) – dry bulb air temperature, [°C]

	rh (float) – relative humidity, [%]

	v (float) – wind speed [m/s] at 1.2 m above the ground

	Other Parameters

	round (boolean, default True) – if True rounds output value, if False it does not round it

	Returns

	net (float) – Normal Effective Temperature, [°C]

Examples

>>> from pythermalcomfort.models import net
>>> net(tdb=37, rh=100, v=0.1)
37

Predicted Heat Strain (PHS) Index

	
pythermalcomfort.models.phs.phs(tdb, tr, v, rh, met, clo, posture, wme=0, **kwargs)

	Calculates the Predicted Heat Strain (PHS) index based in compliace with
the ISO 7933:2004 Standard 8. The ISO 7933 provides a method for the
analytical evaluation and interpretation of the thermal stress experienced
by a subject in a hot environment. It describes a method for predicting the
sweat rate and the internal core temperature that the human body will
develop in response to the working conditions.

The PHS model can be used to predict the: heat by respiratory convection, heat flow
by respiratory evaporation, steady state mean skin temperature, instantaneous value
of skin temperature, heat accumulation associated with the metabolic rate, maximum
evaporative heat flow at the skin surface, predicted sweat rate, predicted evaporative
heat flow, and rectal temperature.

	Parameters

	
	tdb (float, int, or array-like) – dry bulb air temperature, default in [°C]

	tr (float, int, or array-like) – mean radiant temperature, default in [°C]

	v (float, int, or array-like) – air speed, default in [m/s]

	rh (float, int, or array-like) – relative humidity, [%]

	met (float, int, or array-like) – metabolic rate, [W/(m2)]

	clo (float, int, or array-like) – clothing insulation, [clo]

	posture (int) – a numeric value presenting posture of person [sitting=1, standing=2, crouching=3]

	wme (float, int, or array-like) – external work, [W/(m2)] default 0

	Other Parameters

	
	limit_inputs (boolean default True) – By default, if the inputs are outsude the standard applicability limits the
function returns nan. If False returns values even if input values are
outside the applicability limits of the model.

The 7933 limits are 15 < tdb [°C] < 50, 0 < tr [°C] < 60,
0 < vr [m/s] < 3, 100 < met [met] < 450, and 0.1 < clo [clo] < 1.

	i_mst (float, default 0.38) – static moisture permeability index, [dimensionless]

	a_p (float, default 0.54) – fraction of the body surface covered by the reflective clothing, [dimensionless]

	drink (int, default 1) – 1 if workers can drink freely, 0 otherwise

	weight (float, default 75) – body weight, [kg]

	height (float, default 1.8) – height, [m]

	walk_sp (float, default 0) – walking speed, [m/s]

	theta (float, default 0) – angle between walking direction and wind direction [degrees]

	acclimatized (int, default 100) – 100 if acclimatized subject, 0 otherwise

	duration (int, default 480) – duration of the work sequence, [minutes]

	f_r (float, default 0.97) – emissivity of the reflective clothing, [dimensionless]
Some reference values pythermalcomfort.utilities.f_r_garments().

	t_sk (float, default 34.1) – mean skin temperature when worker starts working, [°C]

	t_cr (float, default 36.8) – mean core temperature when worker starts working, [°C]

	t_re (float, default False) – mean rectal temperature when worker starts working, [°C]

	t_cr_eq (float, default False) – mean core temperature as a function of met when worker starts working, [°C]

	sweat_rate (float, default 0)

	Returns

	
	t_re (float) – rectal temperature, [°C]

	t_sk (float) – skin temperature, [°C]

	t_cr (float) – core temperature, [°C]

	t_cr_eq (float) – core temperature as a function of the metabolic rate, [°C]

	t_sk_t_cr_wg (float) – fraction of the body mass at the skin temperature

	d_lim_loss_50 (float) – maximum allowable exposure time for water loss, mean subject, [minutes]

	d_lim_loss_95 (float) – maximum allowable exposure time for water loss, 95% of the working population,
[minutes]

	d_lim_t_re (float) – maximum allowable exposure time for heat storage, [minutes]

	water_loss_watt (float) – maximum water loss in watts, [W]

	water_loss (float) – maximum water loss, [g]

Examples

>>> from pythermalcomfort.models import phs
>>> results = phs(tdb=40, tr=40, rh=33.85, v=0.3, met=150, clo=0.5, posture=2, wme=0)
>>> print(results)
{'t_re': 37.5, 'd_lim_loss_50': 440, 'd_lim_loss_95': 298, 'd_lim_t_re': 480,
'water_loss': 6166.0}

Physiological Equivalent Temperature (PET)

	
pythermalcomfort.models.pet_steady.pet_steady(tdb, tr, v, rh, met, clo, p_atm=1013.25, position=1, age=23, sex=1, weight=75, height=1.8, wme=0)

	The steady physiological equivalent temperature (PET) is calculated using the Munich
Energy-balance Model for Individuals (MEMI), which simulates the human body’s thermal
circumstances in a medically realistic manner. PET is defined as the air temperature
at which, in a typical indoor setting the heat budget of the human body is balanced
with the same core and skin temperature as under the complex outdoor conditions to be
assessed 20.
The following assumptions are made for the indoor reference climate: tdb = tr, v = 0.1
m/s, water vapour pressure = 12 hPa, clo = 0.9 clo, and met = 1.37 met + basic
metabolism.
PET allows a layperson to compare the total effects of complex thermal circumstances
outside with his or her own personal experience indoors in this way. This function
solves the heat balances without accounting for heat storage in the human body.

The PET was originally proposed by Hoppe 20. In 2018, Walther and Goestchel 21
proposed a correction of the original model, purging the errors in the
PET calculation routine, and implementing a state-of-the-art vapour diffusion model.
Walther and Goestchel (2018) model is therefore used to calculate the PET.

	Parameters

	
	tdb (float) – dry bulb air temperature, [°C]

	tr (float) – mean radiant temperature, [°C]

	v (float) – air speed, [m/s]

	rh (float) – relative humidity, [%]

	met (float) – metabolic rate, [met]

	clo (float) – clothing insulation, [clo]

	p_atm (float) – atmospheric pressure, default value 1013.25 [hPa]

	position (int) – position of the individual (1=sitting, 2=standing, 3=standing, forced convection)

	age (int, default 23) – age in years

	sex (int, default 1) – male (1) or female (2).

	weight (float, default 75) – body mass, [kg]

	height (float, default 1.8) – height, [m]

	wme (float, default 0) – external work, [W/(m2)] default 0

	Returns

	PET – Steady-state PET under the given ambient conditions

Examples

>>> from pythermalcomfort.models import pet_steady
>>> pet_steady(tdb=20, tr=20, rh=50, v=0.15, met=1.37, clo=0.5)
18.85

Predicted Mean Vote (PMV) and Predicted Percentage of Dissatisfied (PPD)

	
pythermalcomfort.models.pmv_ppd.pmv_ppd(tdb, tr, vr, rh, met, clo, wme=0, standard='ISO', units='SI', limit_inputs=True, airspeed_control=True)

	Returns Predicted Mean Vote (PMV [https://en.wikipedia.org/wiki/Thermal_comfort#PMV/PPD_method]) and Predicted Percentage of
Dissatisfied (PPD [https://en.wikipedia.org/wiki/Thermal_comfort#PMV/PPD_method]) calculated in accordance to main thermal comfort
Standards. The PMV is an index that predicts the mean value of the thermal
sensation votes (self-reported perceptions) of a large group of people on a
sensation scale expressed from –3 to +3 corresponding to the categories:
cold, cool, slightly cool, neutral, slightly warm, warm, and hot. 1

While the PMV equation is the same for both the ISO and ASHRAE standards, in the
ASHRAE 55 PMV equation, the SET is used to calculate the cooling effect first,
this is then subtracted from both the air and mean radiant temperatures, and the
differences are used as input to the PMV model, while the airspeed is set to 0.1m/s.
Please read more in the Note below.

	Parameters

	
	tdb (float, int, or array-like) – dry bulb air temperature, default in [°C] in [°F] if units = ‘IP’

	tr (float, int, or array-like) – mean radiant temperature, default in [°C] in [°F] if units = ‘IP’

	vr (float, int, or array-like) – relative air speed, default in [m/s] in [fps] if units = ‘IP’

Note: vr is the relative air speed caused by body movement and not the air
speed measured by the air speed sensor. The relative air speed is the sum of the
average air speed measured by the sensor plus the activity-generated air speed
(Vag). Where Vag is the activity-generated air speed caused by motion of
individual body parts. vr can be calculated using the function
pythermalcomfort.utilities.v_relative().

	rh (float, int, or array-like) – relative humidity, [%]

	met (float, int, or array-like) – metabolic rate, [met]

	clo (float, int, or array-like) – clothing insulation, [clo]

Note: The activity as well as the air speed modify the insulation characteristics
of the clothing and the adjacent air layer. Consequently, the ISO 7730 states that
the clothing insulation shall be corrected 2. The ASHRAE 55 Standard corrects
for the effect of the body movement for met equal or higher than 1.2 met using
the equation clo = Icl × (0.6 + 0.4/met) The dynamic clothing insulation, clo,
can be calculated using the function
pythermalcomfort.utilities.clo_dynamic().

	wme (float, int, or array-like) – external work, [met] default 0

	standard (str, optional) – select comfort standard used for calculation.
Supported values are ‘ASHRAE’ and ‘ISO’. Defaults to ‘ISO’.

	If “ISO”, then the ISO Equation is used

	If “ASHRAE”, then the ASHRAE Equation is used

Note: While the PMV equation is the same for both the ISO and ASHRAE standards,
the ASHRAE Standard Use of the PMV model is limited to air speeds below 0.10
m/s (20 fpm).
When air speeds exceed 0.10 m/s (20 fpm), the comfort zone boundaries are
adjusted based on the SET model.
This change was indroduced by the Addendum C to Standard 55-2020 [https://www.ashrae.org/file%20library/technical%20resources/standards%20and%20guidelines/standards%20addenda/55_2020_c_20210430.pdf]

	units (str, optional) – select the SI (International System of Units) or the IP (Imperial Units) system.
Supported values are ‘SI’ and ‘IP’. Defaults to ‘SI’.

	limit_inputs (boolean default True) – By default, if the inputs are outsude the standard applicability limits the
function returns nan. If False returns pmv and ppd values even if input values are
outside the applicability limits of the model.

The ASHRAE 55 2020 limits are 10 < tdb [°C] < 40, 10 < tr [°C] < 40,
0 < vr [m/s] < 2, 1 < met [met] < 4, and 0 < clo [clo] < 1.5.
The ISO 7730 2005 limits are 10 < tdb [°C] < 30, 10 < tr [°C] < 40,
0 < vr [m/s] < 1, 0.8 < met [met] < 4, 0 < clo [clo] < 2, and -2 < PMV < 2.

	airspeed_control (boolean default True) – This only applies if standard = “ASHRAE”. By default it is assumed that the
occupant has control over the airspeed. In this case the ASHRAE 55 Standard does
not impose any airspeed limits. On the other hand, if the occupant has no control
over the airspeed the ASHRAE 55 imposes an upper limit for v which varies as a
function of the operative temperature, for more information please consult the
Standard.

	Returns

	
	pmv (float, int, or array-like) – Predicted Mean Vote

	ppd (float, int, or array-like) – Predicted Percentage of Dissatisfied occupants, [%]

Notes

You can use this function to calculate the PMV [https://en.wikipedia.org/wiki/Thermal_comfort#PMV/PPD_method] and PPD [https://en.wikipedia.org/wiki/Thermal_comfort#PMV/PPD_method] in accordance with
either the ASHRAE 55 2020 Standard 1 or the ISO 7730 Standard 2.

Examples

>>> from pythermalcomfort.models import pmv_ppd
>>> from pythermalcomfort.utilities import v_relative, clo_dynamic
>>> tdb = 25
>>> tr = 25
>>> rh = 50
>>> v = 0.1
>>> met = 1.4
>>> clo = 0.5
>>> # calculate relative air speed
>>> v_r = v_relative(v=v, met=met)
>>> # calculate dynamic clothing
>>> clo_d = clo_dynamic(clo=clo, met=met)
>>> results = pmv_ppd(tdb=tdb, tr=tr, vr=v_r, rh=rh, met=met, clo=clo_d)
>>> print(results)
{'pmv': 0.06, 'ppd': 5.1}
>>> print(results["pmv"])
-0.06
>>> # you can also pass an array-like of inputs
>>> results = pmv_ppd(tdb=[22, 25], tr=tr, vr=v_r, rh=rh, met=met, clo=clo_d)
>>> print(results)
{'pmv': array([-0.47, 0.06]), 'ppd': array([9.6, 5.1])}

	Raises

	
	StopIteration – Raised if the number of iterations exceeds the threshold

	ValueError – The ‘standard’ function input parameter can only be ‘ISO’ or ‘ASHRAE’

Predicted Mean Vote (PMV)

	
pythermalcomfort.models.pmv.pmv(tdb, tr, vr, rh, met, clo, wme=0, standard='ISO', units='SI', limit_inputs=True, airspeed_control=True)

	Returns Predicted Mean Vote (PMV [https://en.wikipedia.org/wiki/Thermal_comfort#PMV/PPD_method]) calculated in accordance to main
thermal comfort Standards. The PMV is an index that predicts the mean value
of the thermal sensation votes (self-reported perceptions) of a large group
of people on a sensation scale expressed from –3 to +3 corresponding to the
categories: cold, cool, slightly cool, neutral, slightly warm, warm, and hot. 1

While the PMV equation is the same for both the ISO and ASHRAE standards, in the
ASHRAE 55 PMV equation, the SET is used to calculate the cooling effect first,
this is then subtracted from both the air and mean radiant temperatures, and the
differences are used as input to the PMV model, while the airspeed is set to 0.1m/s.
Please read more in the Note below.

	Parameters

	
	tdb (float, int, or array-like) – dry bulb air temperature, default in [°C] in [°F] if units = ‘IP’

	tr (float, int, or array-like) – mean radiant temperature, default in [°C] in [°F] if units = ‘IP’

	vr (float, int, or array-like) – relative air speed, default in [m/s] in [fps] if units = ‘IP’

Note: vr is the relative air speed caused by body movement and not the air
speed measured by the air speed sensor. The relative air speed is the sum of the
average air speed measured by the sensor plus the activity-generated air speed
(Vag). Where Vag is the activity-generated air speed caused by motion of
individual body parts. vr can be calculated using the function
pythermalcomfort.utilities.v_relative().

	rh (float, int, or array-like) – relative humidity, [%]

	met (float, int, or array-like) – metabolic rate, [met]

	clo (float, int, or array-like) – clothing insulation, [clo]

Note: The activity as well as the air speed modify the insulation characteristics
of the clothing and the adjacent air layer. Consequently, the ISO 7730 states that
the clothing insulation shall be corrected 2. The ASHRAE 55 Standard corrects
for the effect of the body movement for met equal or higher than 1.2 met using
the equation clo = Icl × (0.6 + 0.4/met) The dynamic clothing insulation, clo,
can be calculated using the function
pythermalcomfort.utilities.clo_dynamic().

	wme (float, int, or array-like) – external work, [met] default 0

	standard (str, optional) – select comfort standard used for calculation.
Supported values are ‘ASHRAE’ and ‘ISO’. Defaults to ‘ISO’.

	If “ISO”, then the ISO Equation is used

	If “ASHRAE”, then the ASHRAE Equation is used

Note: While the PMV equation is the same for both the ISO and ASHRAE standards,
the ASHRAE Standard Use of the PMV model is limited to air speeds below 0.10
m/s (20 fpm).
When air speeds exceed 0.10 m/s (20 fpm), the comfort zone boundaries are
adjusted based on the SET model.
This change was indroduced by the Addendum C to Standard 55-2020 [https://www.ashrae.org/file%20library/technical%20resources/standards%20and%20guidelines/standards%20addenda/55_2020_c_20210430.pdf]

	units (str, optional) – select the SI (International System of Units) or the IP (Imperial Units) system.
Supported values are ‘SI’ and ‘IP’. Defaults to ‘SI’.

	limit_inputs (boolean default True) – By default, if the inputs are outsude the standard applicability limits the
function returns nan. If False returns pmv and ppd values even if input values are
outside the applicability limits of the model.

The ASHRAE 55 2020 limits are 10 < tdb [°C] < 40, 10 < tr [°C] < 40,
0 < vr [m/s] < 2, 1 < met [met] < 4, and 0 < clo [clo] < 1.5.
The ISO 7730 2005 limits are 10 < tdb [°C] < 30, 10 < tr [°C] < 40,
0 < vr [m/s] < 1, 0.8 < met [met] < 4, 0 < clo [clo] < 2, and -2 < PMV < 2.

	airspeed_control (boolean default True) – This only applies if standard = “ASHRAE”. By default it is assumed that the
occupant has control over the airspeed. In this case the ASHRAE 55 Standard does
not impose any airspeed limits. On the other hand, if the occupant has no control
over the airspeed the ASHRAE 55 imposes an upper limit for v which varies as a
function of the operative temperature, for more information please consult the
Standard.

	Returns

	pmv (float, int, or array-like) – Predicted Mean Vote

Notes

You can use this function to calculate the PMV [https://en.wikipedia.org/wiki/Thermal_comfort#PMV/PPD_method] 1 2.

Examples

>>> from pythermalcomfort.models import pmv
>>> from pythermalcomfort.utilities import v_relative, clo_dynamic
>>> t_db = 25
>>> t_r = 25
>>> relative_humidity = 50
>>> v = 0.1
>>> met_rate = 1.4
>>> clo_insulation = 0.5
>>> # calculate relative air speed
>>> v_r = v_relative(v=v, met=met_rate)
>>> # calculate dynamic clothing
>>> clo_d = clo_dynamic(clo=clo_insulation, met=met_rate)
>>> results = pmv(tdb=t_db, tr=t_r, vr=v_r, rh=relative_humidity, met=met_rate, clo=clo_d)
>>> print(results)
0.06
>>> # you can also pass an array-like of inputs
>>> results = pmv(tdb=[22, 25], tr=tr, vr=v_r, rh=rh, met=met, clo=clo_d)
>>> print(results)
array([-0.47, 0.06])

Solar gain on people

	
pythermalcomfort.models.solar_gain.solar_gain(sol_altitude, sharp, sol_radiation_dir, sol_transmittance, f_svv, f_bes, asw=0.7, posture='seated', floor_reflectance=0.6)

	Calculates the solar gain to the human body using the Effective Radiant
Field (ERF) 1. The ERF is a measure of the net energy flux to or from
the human body. ERF is expressed in W over human body surface area [w/m2].
In addition, it calculates the delta mean radiant temperature. Which is the
amount by which the mean radiant temperature of the space should be
increased if no solar radiation is present.

	Parameters

	
	sol_altitude (float) – Solar altitude, degrees from horizontal [deg]. Ranges between 0 and 90.

	sharp (float) – Solar horizontal angle relative to the front of the person (SHARP) [deg].
Ranges between 0 and 180 and is symmetrical on either side. Zero (0) degrees
represents direct-beam radiation from the front, 90 degrees represents
direct-beam radiation from the side, and 180 degrees rep- resent direct-beam
radiation from the back. SHARP is the angle between the sun and the person
only. Orientation relative to compass or to room is not included in SHARP.

	posture (str) – Default ‘seated’ list of available options ‘standing’, ‘supine’ or ‘seated’

	sol_radiation_dir (float) – Direct-beam solar radiation, [W/m2]. Ranges between 200 and 1000. See Table
C2-3 of ASHRAE 55 2020 1.

	sol_transmittance (float) – Total solar transmittance, ranges from 0 to 1. The total solar
transmittance of window systems, including glazing unit, blinds, and other
façade treatments, shall be determined using one of the following methods:
i) Provided by manufacturer or from the National Fenestration Rating
Council approved Lawrence Berkeley National Lab International Glazing
Database.
ii) Glazing unit plus venetian blinds or other complex or unique shades
shall be calculated using National Fenestration Rating Council approved
software or Lawrence Berkeley National Lab Complex Glazing Database.

	f_svv (float) – Fraction of sky-vault view fraction exposed to body, ranges from 0 to 1.
It can be calculated using the function
pythermalcomfort.utilities.f_svv().

	f_bes (float) – Fraction of the possible body surface exposed to sun, ranges from 0 to 1.
See Table C2-2 and equation C-7 ASHRAE 55 2020 1.

	asw (float) – The average short-wave absorptivity of the occupant. It will range widely,
depending on the color of the occupant’s skin as well as the color and
amount of clothing covering the body.
A value of 0.7 shall be used unless more specific information about the
clothing or skin color of the occupants is available.
Note: Short-wave absorptivity typically ranges from 0.57 to 0.84, depending
on skin and clothing color. More information is available in Blum (1945).

	floor_reflectance (float) – Floor refectance. It is assumed to be constant and equal to 0.6.

Notes

More information on the calculation procedure can be found in Appendix C of 1.

	Returns

	
	erf (float) – Solar gain to the human body using the Effective Radiant Field [W/m2]

	delta_mrt (float) – Delta mean radiant temperature. The amount by which the mean radiant
temperature of the space should be increased if no solar radiation is present.

Examples

>>> from pythermalcomfort.models import solar_gain
>>> results = solar_gain(sol_altitude=0, sharp=120,
sol_radiation_dir=800, sol_transmittance=0.5, f_svv=0.5, f_bes=0.5,
asw=0.7, posture='seated')
>>> print(results)
{'erf': 42.9, 'delta_mrt': 10.3}

Standard Effective Temperature (SET)

	
pythermalcomfort.models.set_tmp.set_tmp(tdb, tr, v, rh, met, clo, wme=0, body_surface_area=1.8258, p_atm=101325, body_position='standing', units='SI', limit_inputs=True, **kwargs)

	Calculates the Standard Effective Temperature (SET). The SET is the temperature of
a hypothetical isothermal environment at 50% (rh), <0.1 m/s (20 fpm) average air
speed (v), and tr = tdb, in which the total heat loss from the skin of an imaginary occupant
wearing clothing, standardized for the activity concerned is the same as that
from a person in the actual environment with actual clothing and activity level. 10

	Parameters

	
	tdb (float or array-like) – dry bulb air temperature, default in [°C] in [°F] if units = ‘IP’

	tr (float or array-like) – mean radiant temperature, default in [°C] in [°F] if units = ‘IP’

	v (float or array-like) – air speed, default in [m/s] in [fps] if units = ‘IP’

	rh (float or array-like) – relative humidity, [%]

	met (float or array-like) – metabolic rate, [met]

	clo (float or array-like) – clothing insulation, [clo]

	wme (float or array-like) – external work, [met] default 0

	body_surface_area (float) – body surface area, default value 1.8258 [m2] in [ft2] if units = ‘IP’

The body surface area can be calculated using the function
pythermalcomfort.utilities.body_surface_area().

	p_atm (float) – atmospheric pressure, default value 101325 [Pa] in [atm] if units = ‘IP’

	body_position (str default=”standing” or array-like) – select either “sitting” or “standing”

	units ({‘SI’, ‘IP’}) – select the SI (International System of Units) or the IP (Imperial Units) system.

	limit_inputs (boolean default True) – By default, if the inputs are outsude the following limits the
function returns nan. If False returns values regardless of the input values.
The limits are 10 < tdb [°C] < 40, 10 < tr [°C] < 40,
0 < v [m/s] < 2, 1 < met [met] < 4, and 0 < clo [clo] < 1.5.

	Other Parameters

	round (boolean, deafult True) – if True rounds output value, if False it does not round it

	Returns

	SET (float or array-like) – Standard effective temperature, [°C]

Notes

You can use this function to calculate the SET [https://en.wikipedia.org/wiki/Thermal_comfort#Standard_effective_temperature] temperature in accordance with
the ASHRAE 55 2020 Standard 1.

Examples

>>> from pythermalcomfort.models import set_tmp
>>> set_tmp(tdb=25, tr=25, v=0.1, rh=50, met=1.2, clo=.5)
24.3
>>> set_tmp(tdb=[25, 25], tr=25, v=0.1, rh=50, met=1.2, clo=.5)
array([24.3, 24.3])

>>> # for users who wants to use the IP system
>>> set_tmp(tdb=77, tr=77, v=0.328, rh=50, met=1.2, clo=.5, units='IP')
75.8

Two-node model

	
pythermalcomfort.models.two_nodes.two_nodes(tdb, tr, v, rh, met, clo, wme=0, body_surface_area=1.8258, p_atmospheric=101325, body_position='standing', max_skin_blood_flow=90, **kwargs)

	Two-node model of human temperature regulation Gagge et al. (1986). 10
This model it can be used to calculate a variety of indices,
including:

	Gagge’s version of Fanger’s Predicted Mean Vote (PMV). This function uses the Fanger’s PMV equations but it replaces the heat loss and gain terms with those calculated by the two node model developed by Gagge et al. (1986) 10.

	PMV SET and the predicted thermal sensation based on SET 10. This function is similar in all aspects to the pythermalcomfort.models.pmv_gagge() however, it uses the pythermalcomfort.models.set() equation to calculate the dry heat loss by convection.

	Thermal discomfort (DISC) as the relative thermoregulatory strain necessary to restore a state of comfort and thermal equilibrium by sweating 10. DISC is described numerically as: comfortable and pleasant (0), slightly uncomfortable but acceptable (1), uncomfortable and unpleasant (2), very uncomfortable (3), limited tolerance (4), and intolerable (S). The range of each category is ± 0.5 numerically. In the cold, the classical negative category descriptions used for Fanger’s PMV apply 10.

	Heat gains and losses via convection, radiation and conduction.

	The Standard Effective Temperature (SET)

	The New Effective Temperature (ET)

	The Predicted Thermal Sensation (TSENS)

	The Predicted Percent Dissatisfied Due to Draft (PD)

	Predicted Percent Satisfied With the Level of Air Movement” (PS)

	Parameters

	
	tdb (float, int, or array-like) – dry bulb air temperature, default in [°C] in [°F] if units = ‘IP’

	tr (float or array-like) – mean radiant temperature, default in [°C] in [°F] if units = ‘IP’

	v (float or array-like) – air speed, default in [m/s] in [fps] if units = ‘IP’

	rh (float or array-like) – relative humidity, [%]

	met (float or array-like) – metabolic rate, [met]

	clo (float or array-like) – clothing insulation, [clo]

	wme (float or array-like) – external work, [met] default 0

	body_surface_area (float) – body surface area, default value 1.8258 [m2] in [ft2] if units = ‘IP’

The body surface area can be calculated using the function
pythermalcomfort.utilities.body_surface_area().

	p_atmospheric (float) – atmospheric pressure, default value 101325 [Pa] in [atm] if units = ‘IP’

	body_position (str default=”standing” or array-like) – select either “sitting” or “standing”

	max_skin_blood_flow (float) – maximum blood flow from the core to the skin, [kg/h/m2] default 80

	Other Parameters

	
	round (boolean, default True) – if True rounds output values, if False it does not round them

	max_sweating (float) – Maximum rate at which regulatory sweat is generated, [kg/h/m2]

	w_max (float) – Maximum skin wettedness (w) adimensional. Ranges from 0 and 1.

	Returns

	
	e_skin (float or array-like) – Total rate of evaporative heat loss from skin, [W/m2]. Equal to e_rsw + e_diff

	e_rsw (float or array-like) – Rate of evaporative heat loss from sweat evaporation, [W/m2]

	e_diff (float or array-like) – Rate of evaporative heat loss from moisture diffused through the skin, [W/m2]

	e_max (float or array-like) – Maximum rate of evaporative heat loss from skin, [W/m2]

	q_sensible (float or array-like) – Sensible heat loss from skin, [W/m2]

	q_skin (float or array-like) – Total rate of heat loss from skin, [W/m2]. Equal to q_sensible + e_skin

	q_res (float or array-like) – Total rate of heat loss through respiration, [W/m2]

	t_core (float or array-like) – Core temperature, [°C]

	t_skin (float or array-like) – Skin temperature, [°C]

	m_bl (float or array-like) – Skin blood flow, [kg/h/m2]

	m_rsw (float or array-like) – Rate at which regulatory sweat is generated, [kg/h/m2]

	w (float or array-like) – Skin wettedness, adimensional. Ranges from 0 and 1.

	w_max (float or array-like) – Skin wettedness (w) practical upper limit, adimensional. Ranges from 0 and 1.

	set (float or array-like) – Standard Effective Temperature (SET)

	et (float or array-like) – New Effective Temperature (ET)

	pmv_gagge (float or array-like) – PMV Gagge

	pmv_set (float or array-like) – PMV SET

	pd (float or array-like) – Predicted Percent Dissatisfied Due to Draft”

	ps (float or array-like) – Predicted Percent Satisfied With the Level of Air Movement

	disc (float or array-like) – Thermal discomfort

	t_sens (float or array-like) – Predicted Thermal Sensation

Examples

>>> from pythermalcomfort.models import two_nodes
>>> print(two_nodes(tdb=25, tr=25, v=0.3, rh=50, met=1.2, clo=0.5))
{'e_skin': 15.8, 'e_rsw': 6.5, 'e_diff': 9.3, ... }
>>> print(two_nodes(tdb=[25, 25], tr=25, v=0.3, rh=50, met=1.2, clo=0.5))
{'e_skin': array([15.8, 15.8]), 'e_rsw': array([6.5, 6.5]), ... }

Universal Thermal Climate Index (UTCI)

	
pythermalcomfort.models.utci.utci(tdb, tr, v, rh, units='SI', return_stress_category=False, limit_inputs=True)

	Determines the Universal Thermal Climate Index (UTCI). The UTCI is the
equivalent temperature for the environment derived from a reference
environment. It is defined as the air temperature of the reference
environment which produces the same strain index value in comparison with
the reference individual’s response to the real environment. It is regarded
as one of the most comprehensive indices for calculating heat stress in
outdoor spaces. The parameters that are taken into account for calculating
UTCI involve dry bulb temperature, mean radiation temperature, the pressure
of water vapor or relative humidity, and wind speed (at the elevation of 10
m above the ground). 7

	Parameters

	
	tdb (float, int, or array-like) – dry bulb air temperature, default in [°C] in [°F] if units = ‘IP’

	tr (float, int, or array-like) – mean radiant temperature, default in [°C] in [°F] if units = ‘IP’

	v (float, int, or array-like) – wind speed 10m above ground level, default in [m/s] in [fps] if units = ‘IP’

	rh (float, int, or array-like) – relative humidity, [%]

	units ({‘SI’, ‘IP’}) – select the SI (International System of Units) or the IP (Imperial Units) system.

	return_stress_category (boolean default False) – if True returns the UTCI categorized in terms of thermal stress.

	limit_inputs (boolean default True) – By default, if the inputs are outsude the standard applicability limits the
function returns nan. If False returns UTCI values even if input values are
outside the applicability limits of the model. The valid input ranges are
-50 < tdb [°C] < 50, tdb - 70 < tr [°C] < tdb + 30, and for 0.5 < v [m/s] < 17.0.

	Returns

	
	utci (float, int, or array-like) – Universal Thermal Climate Index, [°C] or in [°F]

	stress_category (str or array-like) – UTCI categorized in terms of thermal stress 9.

Notes

You can use this function to calculate the Universal Thermal Climate Index (UTCI)
The applicability wind speed value must be between 0.5 and 17 m/s.

Examples

>>> from pythermalcomfort.models import utci
>>> utci(tdb=25, tr=25, v=1.0, rh=50)
24.6

>>> # for users who wants to use the IP system
>>> utci(tdb=77, tr=77, v=3.28, rh=50, units='ip')
76.4

>>> # for users who wants to get stress category
>>> utci(tdb=25, tr=25, v=1.0, rh=50, return_stress_category=True)
{"utci": 24.6, "stress_category": "no thermal stress"}

	Raises

	ValueError – Raised if the input are outside the Standard’s applicability limits

Use Fans During Heatwaves

	
pythermalcomfort.models.use_fans_heatwaves.use_fans_heatwaves(tdb, tr, v, rh, met, clo, wme=0, body_surface_area=1.8258, p_atm=101325, body_position='standing', units='SI', max_skin_blood_flow=80, **kwargs)

	It helps you to estimate if the conditions you have selected would cause
heat strain. This occurs when either the following variables reaches its
maximum value:

	m_rsw Rate at which regulatory sweat is generated, [mL/h/m2]

	w : Skin wettedness, adimensional. Ranges from 0 and 1.

	m_bl : Skin blood flow [kg/h/m2]

	Parameters

	
	tdb (float) – dry bulb air temperature, default in [°C] in [°F] if units = ‘IP’

	tr (float) – mean radiant temperature, default in [°C] in [°F] if units = ‘IP’

	v (float) – air speed, default in [m/s] in [fps] if units = ‘IP’

	rh (float) – relative humidity, [%]

	met (float) – metabolic rate, [met]

	clo (float) – clothing insulation, [clo]

	wme (float) – external work, [met] default 0

	body_surface_area (float) – body surface area, default value 1.8258 [m2] in [ft2] if units = ‘IP’

The body surface area can be calculated using the function
pythermalcomfort.utilities.body_surface_area().

	p_atm (float) – atmospheric pressure, default value 101325 [Pa] in [atm] if units = ‘IP’

	body_position (str default=”standing”) – select either “sitting” or “standing”

	units ({‘SI’, ‘IP’}) – select the SI (International System of Units) or the IP (Imperial Units) system.

	max_skin_blood_flow (float, [kg/h/m2] default 80) – maximum blood flow from the core to the skin

	Other Parameters

	
	max_sweating (float, [mL/h/m2] default 500) – max sweating

	round (boolean, default True) – if True rounds output value, if False it does not round it

	limit_inputs (boolean default True) – By default, if the inputs are outside the standard applicability limits the
function returns nan. If False returns pmv and ppd values even if input values are
outside the applicability limits of the model.

The applicability limits are 20 < tdb [°C] < 50, 20 < tr [°C] < 50,
0.1 < v [m/s] < 4.5, 0.7 < met [met] < 2, and 0 < clo [clo] < 1.

	Returns

	
	e_skin (float) – Total rate of evaporative heat loss from skin, [W/m2]. Equal to e_rsw + e_diff

	e_rsw (float) – Rate of evaporative heat loss from sweat evaporation, [W/m2]

	e_diff (float) – Rate of evaporative heat loss from moisture diffused through the skin, [W/m2]

	e_max (float) – Maximum rate of evaporative heat loss from skin, [W/m2]

	q_sensible (float) – Sensible heat loss from skin, [W/m2]

	q_skin (float) – Total rate of heat loss from skin, [W/m2]. Equal to q_sensible + e_skin

	q_res (float) – Total rate of heat loss through respiration, [W/m2]

	t_core (float) – Core temperature, [°C]

	t_skin (float) – Skin temperature, [°C]

	m_bl (float) – Skin blood flow, [kg/h/m2]

	m_rsw (float) – Rate at which regulatory sweat is generated, [mL/h/m2]

	w (float) – Skin wettedness, adimensional. Ranges from 0 and 1.

	w_max (float) – Skin wettedness (w) practical upper limit, adimensional. Ranges from 0 and 1.

	heat_strain (bool) – True if the model predict that the person may be experiencing heat strain

	heat_strain_blood_flow (bool) – True if heat strain is caused by skin blood flow (m_bl) reaching its maximum value

	heat_strain_w (bool) – True if heat strain is caused by skin wettedness (w) reaching its maximum value

	heat_strain_sweating (bool) – True if heat strain is caused by regulatory sweating (m_rsw) reaching its
maximum value

Vertical air temperature gradient

	
pythermalcomfort.models.vertical_tmp_grad_ppd.vertical_tmp_grad_ppd(tdb, tr, vr, rh, met, clo, vertical_tmp_grad, units='SI')

	Calculates the percentage of thermally dissatisfied people with a
vertical temperature gradient between feet and head 1. This equation is
only applicable for vr < 0.2 m/s (40 fps).

	Parameters

	
	tdb (float) – dry bulb air temperature, default in [°C] in [°F] if units = ‘IP’

Note: The air temperature is the average value over two heights: 0.6 m (24 in.)
and 1.1 m (43 in.) for seated occupants
and 1.1 m (43 in.) and 1.7 m (67 in.) for standing occupants.

	tr (float) – mean radiant temperature, default in [°C] in [°F] if units = ‘IP’

	vr (float) – relative air speed, default in [m/s] in [fps] if units = ‘IP’

Note: vr is the relative air speed caused by body movement and not the air
speed measured by the air speed sensor. The relative air speed is the sum of the
average air speed measured by the sensor plus the activity-generated air speed
(Vag). Where Vag is the activity-generated air speed caused by motion of
individual body parts. vr can be calculated using the function
pythermalcomfort.utilities.v_relative().

	rh (float) – relative humidity, [%]

	met (float) – metabolic rate, [met]

	clo (float) – clothing insulation, [clo]

Note: The activity as well as the air speed modify the insulation characteristics
of the clothing and the adjacent air layer. Consequently the ISO 7730 states that
the clothing insulation shall be corrected 2. The ASHRAE 55 Standard corrects
for the effect of the body movement for met equal or higher than 1.2 met using
the equation clo = Icl × (0.6 + 0.4/met) The dynamic clothing insulation, clo,
can be calculated using the function
pythermalcomfort.utilities.clo_dynamic().

	vertical_tmp_grad (float) – vertical temperature gradient between the feet and the head, default in [°C/m]
in [°F/ft] if units = ‘IP’

	units ({‘SI’, ‘IP’}) – select the SI (International System of Units) or the IP (Imperial Units) system.

	Returns

	
	PPD_vg (float) – Predicted Percentage of Dissatisfied occupants with vertical temperature
gradient, [%]

	Acceptability (bol) – The ASHRAE 55 2020 standard defines that the value of air speed at the ankle
level is acceptable if PPD_ad is lower or equal than 5 %

Examples

>>> from pythermalcomfort.models import vertical_tmp_grad_ppd
>>> results = vertical_tmp_grad_ppd(25, 25, 0.1, 50, 1.2, 0.5, 7)
>>> print(results)
{'PPD_vg': 12.6, 'Acceptability': False}

Wet Bulb Globe Temperature Index (WBGT)

	
pythermalcomfort.models.wbgt.wbgt(twb, tg, tdb=None, with_solar_load=False, **kwargs)

	Calculates the Wet Bulb Globe Temperature (WBGT) index calculated in
compliance with the ISO 7243 11. The WBGT is a heat stress index that
measures the thermal environment to which a person is exposed. In most
situations, this index is simple to calculate. It should be used as a
screening tool to determine whether heat stress is present. The PHS model
allows a more accurate estimation of stress. PHS can be calculated using
the function pythermalcomfort.models.phs().

The WBGT determines the impact of heat on a person throughout the course of a working
day (up to 8 h). It does not apply to very brief heat exposures. It pertains to
the evaluation of male and female people who are fit for work in both indoor
and outdoor occupational environments, as well as other sorts of surroundings 11.

The WBGT is defined as a function of only twb and tg if the person is not exposed to
direct radiant heat from the sun. When a person is exposed to direct radiant heat,
tdb must also be specified.

	Parameters

	
	twb (float,) – natural (no forced air flow) wet bulb temperature, [°C]

	tg (float) – globe temperature, [°C]

	tdb (float) – dry bulb air temperature, [°C]. This value is needed as input if the person is
exposed to direct solar radiation

	with_solar_load (bool) – True if the globe sensor is exposed to direct solar radiation

	Other Parameters

	round (boolean, default True) – if True rounds output value, if False it does not round it

	Returns

	wbgt (float) – Wet Bulb Globe Temperature Index, [°C]

Examples

>>> from pythermalcomfort.models import wbgt
>>> wbgt(twb=25, tg=32)
27.1

>>> # if the persion is exposed to direct solar radiation
>>> wbgt(twb=25, tg=32, tdb=20, with_solar_load=True)
25.9

Wind chill index

	
pythermalcomfort.models.wc.wc(tdb, v, **kwargs)

	Calculates the Wind Chill Index (WCI) in accordance with the ASHRAE 2017 Handbook Fundamentals - Chapter 9 18.

The wind chill index (WCI) is an empirical index based on cooling measurements
taken on a cylindrical flask partially filled with water in Antarctica
(Siple and Passel 1945). For a surface temperature of 33°C, the index describes
the rate of heat loss from the cylinder via radiation and convection as a function
of ambient temperature and wind velocity.

This formulation has been met with some valid criticism. WCI is unlikely to be an
accurate measure of heat loss from exposed flesh, which differs from plastic in terms
of curvature, roughness, and radiation exchange qualities, and is always below 33°C
in a cold environment. Furthermore, the equation’s values peak at 90 km/h and then
decline as velocity increases. Nonetheless, this score reliably represents the
combined effects of temperature and wind on subjective discomfort for velocities
below 80 km/h 18.

	Parameters

	
	tdb (float) – dry bulb air temperature,[°C]

	v (float) – wind speed 10m above ground level, [m/s]

	Other Parameters

	round (boolean, default True) – if True rounds output value, if False it does not round it

	Returns

	wci (float) – wind chill index, [W/m2)]

Examples

>>> from pythermalcomfort.models import wc
>>> wc(tdb=-5, v=5.5)
{"wci": 1255.2}

Psychrometrics functions

	
class pythermalcomfort.psychrometrics.PsychrometricValues(p_sat: Union[float, int, numpy.ndarray, List[float], List[int]], p_vap: Union[float, int, numpy.ndarray, List[float], List[int]], hr: Union[float, int, numpy.ndarray, List[float], List[int]], t_wb: Union[float, int, numpy.ndarray, List[float], List[int]], t_dp: Union[float, int, numpy.ndarray, List[float], List[int]], h: Union[float, int, numpy.ndarray, List[float], List[int]])

	

	
pythermalcomfort.psychrometrics.enthalpy(tdb, hr)

	Calculates air enthalpy

	Parameters

	
	tdb (float, int, or array-like) – air temperature, [°C]

	hr (float, int, or array-like) – humidity ratio, [kg water/kg dry air]

	Returns

	enthalpy (float, int, or array-like) – enthalpy [J/kg dry air]

	
pythermalcomfort.psychrometrics.p_sat(tdb)

	Calculates vapour pressure of water at different temperatures

	Parameters

	tdb (float, int, or array-like) – air temperature, [°C]

	Returns

	p_sat (float, int, or array-like) – saturation vapor pressure, [Pa]

	
pythermalcomfort.psychrometrics.p_sat_torr(tdb)

	Estimates the saturation vapor pressure in [torr]

	Parameters

	tdb (float, int, or array-like) – dry bulb air temperature, [C]

	Returns

	p_sat (float) – saturation vapor pressure [torr]

	
pythermalcomfort.psychrometrics.psy_ta_rh(tdb, rh, p_atm=101325)

	Calculates psychrometric values of air based on dry bulb air temperature and
relative humidity.
For more accurate results we recommend the use of the Python package
psychrolib [https://pypi.org/project/PsychroLib/].

	Parameters

	
	tdb (float, int, or array-like) – air temperature, [°C]

	rh (float, int, or array-like) – relative humidity, [%]

	p_atm (float, int, or array-like) – atmospheric pressure, [Pa]

	Returns

	
	p_vap (float, int, or array-like) – partial pressure of water vapor in moist air, [Pa]

	hr (float, int, or array-like) – humidity ratio, [kg water/kg dry air]

	t_wb (float, int, or array-like) – wet bulb temperature, [°C]

	t_dp (float, int, or array-like) – dew point temperature, [°C]

	h (float, int, or array-like) – enthalpy [J/kg dry air]

	
pythermalcomfort.psychrometrics.t_dp(tdb, rh)

	Calculates the dew point temperature.

	Parameters

	
	tdb (float, int, or array-like) – dry bulb air temperature, [°C]

	rh (float, int, or array-like) – relative humidity, [%]

	Returns

	t_dp (float, int, or array-like) – dew point temperature, [°C]

	
pythermalcomfort.psychrometrics.t_mrt(tg, tdb, v, d=0.15, emissivity=0.95, standard='Mixed Convection')

	Converts globe temperature reading into mean radiant temperature in accordance
with either the Mixed Convection developed by Teitelbaum E. et al. (2022) or the ISO
7726:1998 Standard 5.

	Parameters

	
	tg (float, int, or array-like) – globe temperature, [°C]

	tdb (float, int, or array-like) – air temperature, [°C]

	v (float, int, or array-like) – air speed, [m/s]

	d (float, int, or array-like) – diameter of the globe, [m] default 0.15 m

	emissivity (float, int, or array-like) – emissivity of the globe temperature sensor, default 0.95

	standard (str, optional) – Supported values are ‘Mixed Convection’ and ‘ISO’. Defaults to ‘Mixed Convection’.
either choose between the Mixed Convection and ISO formulations.
The Mixed Convection formulation has been proposed by Teitelbaum E. et al. (2022)
to better determine the free and forced convection coefficient used in the
calculation of the mean radiant temperature. They also showed that mean radiant
temperature measured with ping-pong ball-sized globe thermometers is not reliable
due to a stochastic convective bias 22. The Mixed Convection model has only
been validated for globe sensors with a diameter between 0.04 and 0.15 m.

	Returns

	tr (float, int, or array-like) – mean radiant temperature, [°C]

	
pythermalcomfort.psychrometrics.t_o(tdb, tr, v, standard='ISO')

	Calculates operative temperature in accordance with ISO 7726:1998 5

	Parameters

	
	tdb (float, int, or array-like) – air temperature, [°C]

	tr (float, int, or array-like) – mean radiant temperature, [°C]

	v (float, int, or array-like) – air speed, [m/s]

	standard (str (default=”ISO”)) – either choose between ISO and ASHRAE

	Returns

	to (float) – operative temperature, [°C]

	
pythermalcomfort.psychrometrics.t_wb(tdb, rh)

	Calculates the wet-bulb temperature using the Stull equation 6

	Parameters

	
	tdb (float, int, or array-like) – air temperature, [°C]

	rh (float, int, or array-like) – relative humidity, [%]

	Returns

	tdb (float, int, or array-like) – wet-bulb temperature, [°C]

Utilities functions

Body Surface Area

	
pythermalcomfort.utilities.body_surface_area(weight, height, formula='dubois')

	Returns the body surface area in square meters.

	Parameters

	
	weight (float) – body weight, [kg]

	height (float) – height, [m]

	formula (str, optional,) – formula used to calculate the body surface area. default=”dubois”
Choose a name from “dubois”, “takahira”, “fujimoto”, or “kurazumi”.

	Returns

	body_surface_area (float) – body surface area, [m2]

Relative air speed

	
pythermalcomfort.utilities.v_relative(v, met)

	Estimates the relative air speed which combines the average air speed of
the space plus the relative air speed caused by the body movement. Vag is assumed to
be 0 for metabolic rates equal and lower than 1 met and otherwise equal to
Vag = 0.3 (M – 1) (m/s)

	Parameters

	
	v (float, int, or array-like) – air speed measured by the sensor, [m/s]

	met (float) – metabolic rate, [met]

	Returns

	vr (float, int, or array-like) – relative air speed, [m/s]

Dynamic clothing

	
pythermalcomfort.utilities.clo_dynamic(clo, met, standard='ASHRAE')

	Estimates the dynamic clothing insulation of a moving occupant. The activity as
well as the air speed modify the insulation characteristics of the clothing and the
adjacent air layer. Consequently, the ISO 7730 states that the clothing insulation
shall be corrected 2. The ASHRAE 55 Standard corrects for the effect
of the body movement for met equal or higher than 1.2 met using the equation
clo = Icl × (0.6 + 0.4/met)

	Parameters

	
	clo (float, int, or array-like) – clothing insulation, [clo]

	met (float, int, or array-like) – metabolic rate, [met]

	standard (str (default=”ASHRAE”)) –

	If “ASHRAE”, uses Equation provided in Section 5.2.2.2 of ASHRAE 55 2020

	Returns

	clo (float, int, or array-like) – dynamic clothing insulation, [clo]

Running mean outdoor temperature

	
pythermalcomfort.utilities.running_mean_outdoor_temperature(temp_array, alpha=0.8, units='SI')

	Estimates the running mean temperature also known as prevailing mean
outdoor temperature.

	Parameters

	
	temp_array (list) – array containing the mean daily temperature in descending order (i.e. from
newest/yesterday to oldest) \([t_{day-1}, t_{day-2}, ... ,
t_{day-n}]\).
Where \(t_{day-1}\) is yesterday’s daily mean temperature. The EN
16798-1 2019 3 states that n should be equal to 7

	alpha (float) – constant between 0 and 1. The EN 16798-1 2019 3 recommends a value of 0.8,
while the ASHRAE 55 2020 recommends to choose values between 0.9 and 0.6,
corresponding to a slow- and fast- response running mean, respectively.
Adaptive comfort theory suggests that a slow-response running mean (alpha =
0.9) could be more appropriate for climates in which synoptic-scale (day-to-
day) temperature dynamics are relatively minor, such as the humid tropics.

	units (str default=”SI”) – select the SI (International System of Units) or the IP (Imperial Units) system.

	Returns

	t_rm (float) – running mean outdoor temperature

Units converter

	
pythermalcomfort.utilities.units_converter(from_units='ip', **kwargs)

	Converts IP values to SI units.

	Parameters

	
	from_units (str) – specify system to convert from

	**kwargs ([t, v])

	Returns

	converted values in SI units

Sky-vault view fraction

	
pythermalcomfort.utilities.f_svv(w, h, d)

	Calculates the sky-vault view fraction.

	Parameters

	
	w (float) – width of the window, [m]

	h (float) – height of the window, [m]

	d (float) – distance between the occupant and the window, [m]

	Returns

	f_svv (float) – sky-vault view fraction ranges between 0 and 1

Reference values clo and met

Met typical tasks, [met]

	
pythermalcomfort.utilities.met_typical_tasks = {'Basketball': 6.3, 'Calisthenics': 3.5, 'Cooking': 1.8, 'Dancing': 3.4, 'Driving a car': 1.5, 'Driving, heavy vehicle': 3.2, 'Filing, seated': 1.2, 'Filing, standing': 1.4, 'Flying aircraft, combat': 2.4, 'Flying aircraft, routine': 1.2, 'Handling 100lb (45 kg) bags': 4.0, 'Heavy machine work': 4.0, 'House cleaning': 2.7, 'Lifting/packing': 2.1, 'Light machine work': 2.2, 'Pick and shovel work': 4.4, 'Reading, seated': 1.0, 'Reclining': 0.8, 'Seated, heavy limb movement': 2.2, 'Seated, quiet': 1.0, 'Sleeping': 0.7, 'Standing, relaxed': 1.2, 'Table sawing': 1.8, 'Tennis': 3.8, 'Typing': 1.1, 'Walking 2mph (3.2kmh)': 2.0, 'Walking 3mph (4.8kmh)': 2.6, 'Walking 4mph (6.4kmh)': 3.8, 'Walking about': 1.7, 'Wrestling': 7.8, 'Writing': 1.0}

	Met values of typical tasks.

Example

>>> from pythermalcomfort.utilities import met_typical_tasks
>>> print(met_typical_tasks['Filing, standing'])
1.4

Clothing insulation of typical ensembles, [clo]

	
pythermalcomfort.utilities.clo_typical_ensembles = {'Jacket, Trousers, long-sleeve shirt': 0.96, 'Knee-length skirt, long-sleeve shirt, full slip': 0.67, 'Knee-length skirt, short-sleeve shirt, sandals, underwear': 0.54, 'Sweat pants, long-sleeve sweatshirt': 0.74, 'Trousers, long-sleeve shirt': 0.61, 'Trousers, short-sleeve shirt, socks, shoes, underwear': 0.57, 'Typical summer indoor clothing': 0.5, 'Typical winter indoor clothing': 1.0, 'Walking shorts, short-sleeve shirt': 0.36}

	Total clothing insulation of typical ensembles.

Example

>>> from pythermalcomfort.utilities import clo_typical_ensembles
>>> print(clo_typical_ensembles['Typical summer indoor clothing'])
0.5

Insulation of individual garments, [clo]

	
pythermalcomfort.utilities.clo_individual_garments = {'Ankle socks': 0.02, 'Boots': 0.1, 'Bra': 0.01, 'Calf length socks': 0.03, 'Coveralls': 0.49, 'Double-breasted coat (thick)': 0.48, 'Double-breasted coat (thin)': 0.42, 'Executive chair': 0.15, 'Full slip': 0.16, 'Half slip': 0.14, 'Knee socks (thick)': 0.06, 'Long sleeve shirt (thick)': 0.36, 'Long sleeve shirt (thin)': 0.25, 'Long underwear bottoms': 0.15, 'Long underwear top': 0.2, 'Long-sleeve dress shirt': 0.25, 'Long-sleeve flannel shirt': 0.34, 'Long-sleeve long gown': 0.46, 'Long-sleeve long wrap robe (thick)': 0.69, 'Long-sleeve pajamas (thick)': 0.57, 'Long-sleeve shirt dress (thick)': 0.47, 'Long-sleeve shirt dress (thin)': 0.33, 'Long-sleeve short wrap robe (thick)': 0.48, 'Long-sleeve sweat shirt': 0.34, "Men's underwear": 0.04, 'Metal chair': 0.0, 'Overalls': 0.3, 'Panty hose': 0.02, 'Shoes or sandals': 0.02, 'Short shorts': 0.06, 'Short-sleeve dress shirt': 0.19, 'Short-sleeve hospital gown': 0.31, 'Short-sleeve knit shirt': 0.17, 'Short-sleeve pajamas': 0.42, 'Short-sleeve shirt dress': 0.29, 'Short-sleeve short robe (thin)': 0.34, 'Single-breasted coat (thick)': 0.44, 'Single-breasted coat (thin)': 0.36, 'Sleeveless long gown (thin)': 0.2, 'Sleeveless scoop-neck blouse': 0.12, 'Sleeveless short gown (thin)': 0.18, 'Sleeveless vest (thick)': 0.17, 'Sleeveless vest (thin)': 0.1, 'Sleeveless, scoop-neck shirt (thick)': 0.27, 'Sleeveless, scoop-neck shirt (thin)': 0.23, 'Slippers': 0.03, 'Standard office chair': 0.1, 'Sweatpants': 0.28, 'T-shirt': 0.08, 'Thick skirt': 0.23, 'Thick trousers': 0.24, 'Thin skirt': 0.14, 'Thin trousers': 0.15, 'Walking shorts': 0.08, "Women's underwear": 0.03, 'Wooden stool': 0.01}

	Clo values of individual clothing elements. To calculate the total clothing insulation you need to add these values together.

Example

>>> from pythermalcomfort.utilities import clo_individual_garments
>>> print(clo_individual_garments['T-shirt'])
0.08

>>> # calculate total clothing insulation
>>> i_cl = clo_individual_garments['T-shirt'] + clo_individual_garments["Men's underwear"] +
>>> clo_individual_garments['Thin trousers'] + clo_individual_garments['Shoes or sandals']
>>> print(i_cl)
0.29

References

	1(1,2,3,4,5,6,7,8,9,10,11,12,13)

	ANSI, & ASHRAE. (2020). Thermal Environmental Conditions for Human Occupancy. Atlanta.

	2(1,2,3,4,5,6,7,8,9,10)

	ISO. (2005). ISO 7730 - Ergonomics of the thermal environment — Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria.

	3(1,2,3,4)

	EN, & BSI. (2019). Energy performance of buildings - Ventilation for buildings. BSI Standards Limited 2019.

	4

	Schiavon, S., & Lee, K. H. (2013). Dynamic predictive clothing insulation models based on outdoor air and indoor operative temperatures. Building and Environment, 59, 250–260. doi.org/10.1016/j.buildenv.2012.08.024

	5(1,2)

	ISO. (1998). ISO 7726 - Ergonomics of the thermal environment instruments for measuring physical quantities.

	6

	Stull, R., 2011. Wet-Bulb Temperature from Relative Humidity and Air Temperature. J. Appl. Meteorol. Climatol. 50, 2267–2269. doi.org/10.1175/JAMC-D-11-0143.1

	7

	Zare, S., Hasheminejad, N., Shirvan, H.E., Hemmatjo, R., Sarebanzadeh, K., Ahmadi, S., 2018. Comparing Universal Thermal Climate Index (UTCI) with selected thermal indices/environmental parameters during 12 months of the year. Weather Clim. Extrem. 19, 49–57. https://doi.org/10.1016/j.wace.2018.01.004

	8

	ISO, 2004. ISO 7933 - Ergonomics of the thermal environment — Analytical determination and interpretation of heat stress using calculation of the predicted heat strain.

	9

	Błażejczyk, K., Jendritzky, G., Bröde, P., Fiala, D., Havenith, G., Epstein, Y., Psikuta, A. and Kampmann, B., 2013. An introduction to the universal thermal climate index (UTCI). Geographia Polonica, 86(1), pp.5-10.

	10(1,2,3,4,5,6)

	Gagge, A.P., Fobelets, A.P., and Berglund, L.G., 1986. A standard predictive Index of human reponse to thermal enviroment. Am. Soc. Heating, Refrig. Air-Conditioning Eng. 709–731.

	11(1,2)

	ISO, 2017. ISO 7243 - Ergonomics of the thermal environment — Assessment of heat stress using the WBGT (wet bulb globe temperature) index.

	12

	Rothfusz LP (1990) The heat index equation. NWS Southern Region Technical Attachment, SR/SSD 90–23, Fort Worth, Texas

	13

	Steadman RG (1979) The assessment of sultriness. Part I: A temperature-humidity index based on human physiology and clothing science. J Appl Meteorol 18:861–873

	14

	Masterton JM, Richardson FA. Humidex, a method of quantifying human discomfort due to excessive heat and humidity. Downsview, Ontario: CLI 1-79, Environment Canada, Atmospheric Environment Service, 1979

	15(1,2)

	Havenith, G., Fiala, D., 2016. Thermal indices and thermophysiological modeling for heat stress. Compr. Physiol. 6, 255–302. DOI: doi.org/10.1002/cphy.c140051

	16(1,2,3)

	Blazejczyk, K., Epstein, Y., Jendritzky, G., Staiger, H., Tinz, B., 2012. Comparison of UTCI to selected thermal indices. Int. J. Biometeorol. 56, 515–535. DOI: doi.org/10.1007/s00484-011-0453-2

	17

	Steadman RG (1984) A universal scale of apparent temperature. J Appl Meteorol Climatol 23:1674–1687

	18(1,2)

	ASHRAE, 2017. 2017 ASHRAE Handbook Fundamentals. Atlanta.

	20(1,2)

	Höppe P. The physiological equivalent temperature - a universal index for the biometeorological assessment of the thermal environment. Int J Biometeorol. 1999 Oct;43(2):71-5. doi: 10.1007/s004840050118. PMID: 10552310.

	21

	Walther, E. and Goestchel, Q., 2018. The PET comfort index: Questioning the model. Building and Environment, 137, pp.1-10. DOI: doi.org/10.1016/j.buildenv.2018.03.054

	22

	Teitelbaum, E., Alsaad, H., Aviv, D., Kim, A., Voelker, C., Meggers, F., & Pantelic, J. (2022). Addressing a systematic error correcting for free and mixed convection when measuring mean radiant temperature with globe thermometers. Scientific Reports, 12(1), 1–18. DOI: doi.org/10.1038/s41598-022-10172-5

	23

	Liu, S., Schiavon, S., Kabanshi, A., Nazaroff, W.W., 2017. Predicted percentage dissatisfied with ankle draft. Indoor Air 27, 852–862. DOI: doi.org/10.1111/ina.12364

	24

	Polydoros, Anastasios & Cartalis, Constantinos. (2015). Use of Earth Observation based indices for the monitoring of built-up area features and dynamics in support of urban energy studies. Energy and Buildings. 98. 92-99. 10.1016/j.enbuild.2014.09.060.

	25

	Yao, Runming & Li, Baizhan & Liu, Jing. (2009). A theoretical adaptive model of thermal comfort – Adaptive Predicted Mean Vote (aPMV). Building and Environment. 44. 2089-2096. 10.1016/j.buildenv.2009.02.014.

	26

	Fanger, P. & Toftum, Jorn. (2002). Extension of the PMV model to non-air-conditioned buildings in warm climates. Energy and Buildings. 34. 533-536. 10.1016/S0378-7788(02)00003-8.

	27

	Schweiker, M., 2022. Combining adaptive and heat balance models for thermal sensation prediction: A new approach towards a theory and data‐driven adaptive thermal heat balance model. Indoor Air 32, 1–19. DOI: doi.org/10.1111/ina.13018

 Contributing

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

Bug reports

When reporting a bug [https://github.com/CenterForTheBuiltEnvironment/pythermalcomfort/issues] please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Documentation improvements

pythermalcomfort could always use more documentation, whether as part of the
official pythermalcomfort docs, in docstrings, or even on the web in blog posts,
articles, and such.

Feature requests and feedback

The best way to send feedback is to file an issue at https://github.com/CenterForTheBuiltEnvironment/pythermalcomfort/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that code contributions are welcome :)

Development

To set up pythermalcomfort for local development:

	Fork pythermalcomfort [https://github.com/CenterForTheBuiltEnvironment/pythermalcomfort]
(look for the “Fork” button).

	Clone your fork locally. Fetch and pull all the updates from the master branch before you do anything:

git clone git@github.com:CenterForTheBuiltEnvironment/pythermalcomfort.git

	Create a branch for local development. The naming rule for new branch are, as follows:

	If this update is for a new feature Feature/feature_name_here

	If this update is for bug fix Fix/bug_name_here

	If this update is for documentation Documentation/doc_name_here

You can create a branch locally using the following command. Make sure you only push updates to this new branch only:

git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes run all the checks and docs builder with tox one command:

tox

	Commit your changes and push your branch to GitHub:

git add .
git commit -m "Your detailed description of your changes."
git push origin name-of-your-bugfix-or-feature

	Submit a pull request after you have done all your modifications and tested your work. The pull request should include a detailed description of your work:

	What this pull request is about

	Have you tested your work

	Will this work affect other component in the product

Pull Request Guidelines

If you need some code review or feedback while you’re developing the code just make the pull request.

For merging, you should:

	Include passing tests (run tox).

	Update documentation when there’s new API, functionality etc.

	Add a note to CHANGELOG.rst about the changes.

	Add yourself to AUTHORS.rst.

Tips

To run a subset of tests:

tox -e envname -- pytest -k test_myfeature

To run all the test environments in parallel (you need to pip install detox):

detox

To add a function

	Add the function to the python file pythermalcomfort/models/ and document it.

	Add any related functions that are used by your function either in pythermalcomfort/utilities.py or src/pythermalcomfort/psychrometrics.py. See existing code as example.

	Test your function by writing a test in tests/test_XXXX.py. Test it by running tox -e pyXX where XX is the Python version you want to use, e.g. 37

	Add autofunction to doc.reference.pythermalcomfort.py.

 Authors

Authors

	Federico Tartarini [https://www.linkedin.com/in/federico-tartarini-3991995b/]

	Stefano Schiavon [https://www.linkedin.com/in/stefanoschiavon/]

	Tyler Hoyt [https://www.linkedin.com/in/tyler-hoyt1/]

	Chris Mackey

Derivative work

pythermalcomfort [https://pypi.org/project/pythermalcomfort/] is a derivative work of the following software projects:

	CBE Comfort Tool [https://comfort.cbe.berkeley.edu] for indoor thermal comfort calculations. Available under GPL.

	ladybug-comfort [https://pypi.org/project/ladybug-comfort/]. Available under GPL.

	UTCI [https://www.utci.org/] Fortran Code for outdoor thermal comfort calculations. Available under MIT.

 Contact us

Contact us

If you need help, would like to ask a question about the tool, give us a feedback, or suggest a new feature you can now use GitHub discussions [https://github.com/CenterForTheBuiltEnvironment/pythermalcomfort/discussions].

Bug reports

You can report bugs using GitHub issues [https://github.com/CenterForTheBuiltEnvironment/pythermalcomfort/issues].
When reporting a bug please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

 Changelog

Changelog

2.9.1 (2024-01-19)

	Fixed error calculation of mass sweating in PET mode, the unit was incorrect

2.9.0 (2024-01-15)

Warning

pythermalcomfort 2.9.0 is no longer compatible with Python 3.8

	The PHS model accepts arrays as inputs

2.8.11 (2023-10-26)

	wrote more test and improved code

2.8.11 (2023-10-26)

	fixed issues with the documentation and sorted the models in alphabetical order

2.8.7 (2023-10-23)

	Adaptive ASHRAE now returns a dataclass

2.8.6 (2023-10-09)

	re-structured and linted the code

2.8.4 (2023-09-20)

	calculation of cooling effect in pmv (standard=’ashrae’) triggered only when v>0.1 m/s

2.8.3 (2023-09-14)

	general improvements in the JOS3 model

2.8.2 (2023-09-04)

	general improvements in the JOS3 model

	fixed error when e_max == 0

2.8.1 (2023-07-05)

	pythermalcomfort needs Python version > 3.8

	fixed issue in Cooling Effect calculation

2.8.0 (2023-07-03)

	allowing the cooling effect to range from 0 to 40

	fixed PHS documentation

	improved JOS3 documentation

2.7.0 (2023-02-16)

	changed coefficient of vasodilation in set_tmp() to 120 to match ASHRAE 55 2020 code

	slightly modified value in validation tables

2.6.0 (2023-01-17)

	max sweating rate can be passed to two node model

	max skin wettedness can be passed to two node model

	rounding w to two decimals

	use_fans_heatwave function accepts arrays

	fixed typos unit documentation

2.5.4 (2022-10-12)

	PHS model accepts all required inputs to be run on a minute by minute basis

	fix error check compliance PHS model

2.5.0 (2022-06-13)

	Added the adaptive thermal heat balance (ATHB) model

2.4.0 (2022-06-10)

	Added e_pmv model - Adjusted Predicted Mean Votes with Expectancy Factor

	Added a_pmv model - Adaptive Predicted Mean Vote

2.3.0 (2022-06-01)

	Added discomfort index

2.2.0 (2022-05-17)

	Implemented a better equation to calculate the mean radiant temperature

2.1.1 (2022-05-17)

	Fixed how DISC is calculated

2.1.0 (2022-04-20)

	Added Physiological Equivalent Temperature (PET) model

	In PMV and PPD function you can specify if occupants has control over airspeed

2.0.2 (2022-04-12)

	UTCI accepts lists as inputs

2.0.0 (2022-04-07)

Warning

Version 2.0.0 introduces some breaking changes. Now the default behaviour of most of the function is that they return a np.nan if the inputs are outside the model applicability limits.

For most functions we are no longer printing Warnings. If you want the function to return a value even if your inputs are outside the model applicability limits then you can set the variable limit_input = False. Please note that you should refrain from doing this.

Note

Starting from Version 2.0.0 of pythermalcomfort now most of the functions (see detailed list below) accept Numpy arrays or lists as inputs. This allows you to write more concise and faster code since we optimized vectorization, where possible using Numba.

	Allowing users to pass Numpy arrays or lists as input to the pmv_ppd, pmv, clo_tout, both adaptive models, utci, set_tmp, two_nodes

	Changed the input variable from return_invalid to limit_input

	Increased speed by using Numba @vectorize decorator

	Changed ASHRAE 55 2020 limits to match new addenda

	Improved documentation

1.11.0 (2022-03-16)

	Allowing users to pass a Numpy array as input into the UTCI function

	Numpy is now a requirement of pythermalcomfort

	Improved PMV, JOS-3, and UTCI documentation

	Testing PMV, SET, and solar gains models using online reference tables

1.10.0 (2021-11-15)

	Added JOS-3 model

1.9.0 (2021-10-07)

	Added Normal Effective Temperature (NET)

	Added Apparent Temperature (AT)

	Added Wind Chill Index (WCI)

1.8.0 (2021-09-28)

	Gagge’s two-node model

	Added WBGT equation

	Added Heat index (HI)

	Added humidex index

1.7.1 (2021-09-08)

	Added ASHRAE equation to calculate the operative temperature

1.7.0 (2021-07-29)

	Implemented function to calculate the if fans are beneficial during heatwaves

	Fixed error in the SET equation to calculated radiative heat transfer coefficient

	Fixed error in SET definition

	Moved functions optimized with Numba to new file

1.6.2 (2021-07-08)

	Updated equation clo_dynamic based on ANSI/ASHRAE Addendum f to ANSI/ASHRAE Standard 55-2020

	Fixed import errors in examples

1.6.1 (2021-07-05)

	optimized UTCI function with Numba

1.6.0 (2021-05-21)

	(BREAKING CHANGE) moved some of the functions from psychrometrics to utilities

	added equation to calculate body surface area

1.5.2 (2021-05-05)

	return stress category UTCI

1.5.1 (2021-04-29)

	optimized phs with Numba

1.5.0 (2021-04-21)

	added Predicted Heat Strain (PHS) index from ISO 7933:2004

1.4.6 (2021-03-30)

	changed equation to calculate convective heat transfer coefficient in set_tmp() as per Gagge’s 1986

	fixed vasodilation coefficient in set_tmp()

	docs changed term air velocity with air speed and improved documentation

	added new tests for comfort functions

1.3.6 (2021-02-04)

	fixed error calculation solar_altitude and sharp for supine person in solar_gain

1.3.5 (2021-02-02)

	not rounding SET temperature when calculating cooling effect

1.3.3 (2020-12-14)

	added function to calculate sky-vault view fraction

1.3.2 (2020-12-14)

	replaced input solar_azimuth with sharp in the solar_gain() function

	fixed small error in example pmv calculation

1.3.1 (2020-10-30)

	Fixed error calculation of cooling effect with elevated air temperatures

1.3.0 (2020-10-19)

	Changed PMV elevated air speed limit from 0.2 to 0.1 m/s

1.2.3 (2020-09-09)

	Fixed error in the calculation of erf

	Updated validation table erf

1.2.2 (2020-08-21)

	Changed default diameter in t_mrt

	Improved documentation

1.2.0 (2020-07-29)

	Significantly improved calculation speed using numba. Wrapped set and pmv functions

1.0.6 (2020-07-24)

	Minor speed improvement changed math.pow with **

	Added validation PMV validation table from ISO 7730

1.0.4 (2020-07-20)

	Improved speed calculation of the Cooling Effect

	Bisection has been replaced with Brentq function from scipy

1.0.3 (2020-07-01)

	Annotated variables in the SET code.

1.0.2 (2020-06-11)

	Fixed an error in the bisection equation used to calculated Cooling Effect.

1.0.0 (2020-06-09)

	Major stable release.

0.7.0 (2020-06-09)

	Added equation to calculate the dynamic clothing insulation

0.6.3 (2020-04-11)

	Fixed error in calculation adaptive ASHRAE

	Added some examples

0.6.3 (2020-03-17)

	Renamed function to_calc to t_o

	Fixed error calculation of relative air speed

	renamed input parameter ta to tdb

	Added function to calculate mean radiant temperature from black globe temperature

	Added function to calculate solar gain on people

	Added functions to calculate vapour pressure, wet-bulb temperature, dew point temperature, and psychrometric data from dry bulb temperature and RH

	Added authors

	Added dictionaries with reference clo and met values

	Added function to calculate enthalpy

0.5.2 (2020-03-11)

	Added function to calculate the running mean outdoor temperature

0.5.1 (2020-03-06)

	There was an error in version 0.4.2 in the calculation of PMV and PPD with elevated air speed, i.e. vr > 0.2 which has been fixed in this version

	Added function to calculate the cooling effect in accordance with ASHRAE

0.4.1 (2020-02-17)

	Removed compatibility with python 2.7 and 3.5

0.4.0 (2020-02-17)

	Created adaptive_EN, v_relative, t_clo, vertical_tmp_gradient, ankle_draft functions and wrote tests.

	Added possibility to decide with measuring system to use SI or IP.

0.3.0 (2020-02-13)

	Created set_tmp, adaptive_ashrae, UTCI functions and wrote tests.

	Added warning to let the user know if inputs entered do not comply with Standards applicability limits.

0.1.0 (2020-02-11)

	Created pmv, pmv_ppd functions and wrote tests.

	Documented code.

0.0.0 (2020-02-11)

	First release on PyPI.

 Python Module Index

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pythermalcomfort	

 	
 	
 pythermalcomfort.psychrometrics	

 Index

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | H
 | J
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | V
 | W

_

 	
 	__init__() (pythermalcomfort.models.jos3.JOS3 method)

A

 	
 	a_pmv() (in module pythermalcomfort.models.a_pmv)

 	adaptive_ashrae() (in module pythermalcomfort.models.adaptive_ashrae)

 	adaptive_en() (in module pythermalcomfort.models.adaptive_en)

 	
 	ankle_draft() (in module pythermalcomfort.models.ankle_draft)

 	at() (in module pythermalcomfort.models.at)

 	athb() (in module pythermalcomfort.models.athb)

B

 	
 	bmr (pythermalcomfort.models.jos3.JOS3 property)

 	body_names (pythermalcomfort.models.jos3.JOS3 property)

 	
 	body_surface_area() (in module pythermalcomfort.utilities)

 	body_temp (pythermalcomfort.models.jos3.JOS3 property)

 	bsa (pythermalcomfort.models.jos3.JOS3 property)

C

 	
 	clo (pythermalcomfort.models.jos3.JOS3 property)

 	clo_dynamic() (in module pythermalcomfort.utilities)

 	clo_individual_garments (in module pythermalcomfort.utilities)

 	
 	clo_tout() (in module pythermalcomfort.models.clo_tout)

 	clo_typical_ensembles (in module pythermalcomfort.utilities)

 	cooling_effect() (in module pythermalcomfort.models.cooling_effect)

D

 	
 	dict_results() (pythermalcomfort.models.jos3.JOS3 method)

 	
 	discomfort_index() (in module pythermalcomfort.models.discomfort_index)

E

 	
 	e_pmv() (in module pythermalcomfort.models.e_pmv)

 	
 	enthalpy() (in module pythermalcomfort.psychrometrics)

F

 	
 	f_svv() (in module pythermalcomfort.utilities)

H

 	
 	heat_index() (in module pythermalcomfort.models.heat_index)

 	
 	humidex() (in module pythermalcomfort.models.humidex)

J

 	
 	JOS3 (class in pythermalcomfort.models.jos3)

M

 	
 	met_typical_tasks (in module pythermalcomfort.utilities)

 	
 	
 module

 	pythermalcomfort.psychrometrics

N

 	
 	net() (in module pythermalcomfort.models.net)

P

 	
 	p_sat() (in module pythermalcomfort.psychrometrics)

 	p_sat_torr() (in module pythermalcomfort.psychrometrics)

 	par (pythermalcomfort.models.jos3.JOS3 property)

 	pet_steady() (in module pythermalcomfort.models.pet_steady)

 	phs() (in module pythermalcomfort.models.phs)

 	pmv() (in module pythermalcomfort.models.pmv)

 	
 	pmv_ppd() (in module pythermalcomfort.models.pmv_ppd)

 	posture (pythermalcomfort.models.jos3.JOS3 property)

 	psy_ta_rh() (in module pythermalcomfort.psychrometrics)

 	PsychrometricValues (class in pythermalcomfort.psychrometrics)

 	
 pythermalcomfort.psychrometrics

 	module

R

 	
 	r_et (pythermalcomfort.models.jos3.JOS3 property)

 	r_t (pythermalcomfort.models.jos3.JOS3 property)

 	
 	results (pythermalcomfort.models.jos3.JOS3 property)

 	rh (pythermalcomfort.models.jos3.JOS3 property)

 	running_mean_outdoor_temperature() (in module pythermalcomfort.utilities)

S

 	
 	set_tmp() (in module pythermalcomfort.models.set_tmp)

 	
 	simulate() (pythermalcomfort.models.jos3.JOS3 method)

 	solar_gain() (in module pythermalcomfort.models.solar_gain)

T

 	
 	t_artery (pythermalcomfort.models.jos3.JOS3 property)

 	t_cb (pythermalcomfort.models.jos3.JOS3 property)

 	t_core (pythermalcomfort.models.jos3.JOS3 property)

 	t_dp() (in module pythermalcomfort.psychrometrics)

 	t_fat (pythermalcomfort.models.jos3.JOS3 property)

 	t_mrt() (in module pythermalcomfort.psychrometrics)

 	t_muscle (pythermalcomfort.models.jos3.JOS3 property)

 	t_o() (in module pythermalcomfort.psychrometrics)

 	t_skin (pythermalcomfort.models.jos3.JOS3 property)

 	
 	t_skin_mean (pythermalcomfort.models.jos3.JOS3 property)

 	t_superficial_vein (pythermalcomfort.models.jos3.JOS3 property)

 	t_vein (pythermalcomfort.models.jos3.JOS3 property)

 	t_wb() (in module pythermalcomfort.psychrometrics)

 	tdb (pythermalcomfort.models.jos3.JOS3 property)

 	to (pythermalcomfort.models.jos3.JOS3 property)

 	to_csv() (pythermalcomfort.models.jos3.JOS3 method)

 	tr (pythermalcomfort.models.jos3.JOS3 property)

 	two_nodes() (in module pythermalcomfort.models.two_nodes)

U

 	
 	units_converter() (in module pythermalcomfort.utilities)

 	
 	use_fans_heatwaves() (in module pythermalcomfort.models.use_fans_heatwaves)

 	utci() (in module pythermalcomfort.models.utci)

V

 	
 	v (pythermalcomfort.models.jos3.JOS3 property)

 	v_relative() (in module pythermalcomfort.utilities)

 	
 	version (pythermalcomfort.models.jos3.JOS3 property)

 	vertical_tmp_grad_ppd() (in module pythermalcomfort.models.vertical_tmp_grad_ppd)

W

 	
 	w (pythermalcomfort.models.jos3.JOS3 property)

 	w_mean (pythermalcomfort.models.jos3.JOS3 property)

 	
 	wbgt() (in module pythermalcomfort.models.wbgt)

 	wc() (in module pythermalcomfort.models.wc)

nav.xhtml

 Table of Contents

 		
 Contents

 		
 Overview

 		
 Installation

 		
 Documentation

 		
 Examples and Tutorials

 		
 Contributing

 		
 Deployment

 		
 Installation

 		
 Examples and Tutorials

 		
 Functions documentation

 		
 Comfort models

 		
 Adaptive ASHRAE

 		
 Adaptive EN

 		
 Adaptive Predicted Mean Vote (aPMV)

 		
 Adaptive Thermal Heat Balance (ATHB)

 		
 Adjusted Predicted Mean Votes with Expectancy Factor (ePMV)

 		
 Apparent Temperature (AT)

 		
 Ankle draft

 		
 Clothing prediction

 		
 Cooling Effect (CE)

 		
 Discomfort Index (DI)

 		
 Heat Index (HI)

 		
 Humidex

 		
 Joint system thermoregulation model (JOS-3)

 		
 Normal Effective Temperature (NET)

 		
 Predicted Heat Strain (PHS) Index

 		
 Physiological Equivalent Temperature (PET)

 		
 Predicted Mean Vote (PMV) and Predicted Percentage of Dissatisfied (PPD)

 		
 Predicted Mean Vote (PMV)

 		
 Solar gain on people

 		
 Standard Effective Temperature (SET)

 		
 Two-node model

 		
 Universal Thermal Climate Index (UTCI)

 		
 Use Fans During Heatwaves

 		
 Vertical air temperature gradient

 		
 Wet Bulb Globe Temperature Index (WBGT)

 		
 Wind chill index

 		
 Psychrometrics functions

 		
 PsychrometricValues

 		
 enthalpy()

 		
 p_sat()

 		
 p_sat_torr()

 		
 psy_ta_rh()

 		
 t_dp()

 		
 t_mrt()

 		
 t_o()

 		
 t_wb()

 		
 Utilities functions

 		
 Body Surface Area

 		
 Relative air speed

 		
 Dynamic clothing

 		
 Running mean outdoor temperature

 		
 Units converter

 		
 Sky-vault view fraction

 		
 Reference values clo and met

 		
 Met typical tasks, [met]

 		
 Clothing insulation of typical ensembles, [clo]

 		
 Insulation of individual garments, [clo]

 		
 Contributing

 		
 Bug reports

 		
 Documentation improvements

 		
 Feature requests and feedback

 		
 Development

 		
 Pull Request Guidelines

 		
 Tips

 		
 Authors

 		
 Contact us

 		
 Bug reports

 		
 Changelog

 		
 2.9.1 (2024-01-19)

 		
 2.9.0 (2024-01-15)

 		
 2.8.11 (2023-10-26)

 		
 2.8.11 (2023-10-26)

 		
 2.8.7 (2023-10-23)

 		
 2.8.6 (2023-10-09)

 		
 2.8.4 (2023-09-20)

 		
 2.8.3 (2023-09-14)

 		
 2.8.2 (2023-09-04)

 		
 2.8.1 (2023-07-05)

 		
 2.8.0 (2023-07-03)

 		
 2.7.0 (2023-02-16)

 		
 2.6.0 (2023-01-17)

 		
 2.5.4 (2022-10-12)

 		
 2.5.0 (2022-06-13)

 		
 2.4.0 (2022-06-10)

 		
 2.3.0 (2022-06-01)

 		
 2.2.0 (2022-05-17)

 		
 2.1.1 (2022-05-17)

 		
 2.1.0 (2022-04-20)

 		
 2.0.2 (2022-04-12)

 		
 2.0.0 (2022-04-07)

 		
 1.11.0 (2022-03-16)

 		
 1.10.0 (2021-11-15)

 		
 1.9.0 (2021-10-07)

 		
 1.8.0 (2021-09-28)

 		
 1.7.1 (2021-09-08)

 		
 1.7.0 (2021-07-29)

 		
 1.6.2 (2021-07-08)

 		
 1.6.1 (2021-07-05)

 		
 1.6.0 (2021-05-21)

 		
 1.5.2 (2021-05-05)

 		
 1.5.1 (2021-04-29)

 		
 1.5.0 (2021-04-21)

 		
 1.4.6 (2021-03-30)

 		
 1.3.6 (2021-02-04)

 		
 1.3.5 (2021-02-02)

 		
 1.3.3 (2020-12-14)

 		
 1.3.2 (2020-12-14)

 		
 1.3.1 (2020-10-30)

 		
 1.3.0 (2020-10-19)

 		
 1.2.3 (2020-09-09)

 		
 1.2.2 (2020-08-21)

 		
 1.2.0 (2020-07-29)

 		
 1.0.6 (2020-07-24)

 		
 1.0.4 (2020-07-20)

 		
 1.0.3 (2020-07-01)

 		
 1.0.2 (2020-06-11)

 		
 1.0.0 (2020-06-09)

 		
 0.7.0 (2020-06-09)

 		
 0.6.3 (2020-04-11)

 		
 0.6.3 (2020-03-17)

 		
 0.5.2